CS 5110/6110 – Rigorous System Design | Spring 2017 Mar-9

Lecture 15 Explicit State Checkers

Zvonimir Rakamarić University of Utah

SMT solvers

This Time

 Checking concurrent programs using explicitstate model checking

Concurrency is Pervasive

- Old problem of computer science
 - Ancient supercomputers
- Today
 - Multi-cores even in cell phones
 - Many-cores in desktops
- Most programs are concurrent
 - At least the ones you care about

Concurrency is Hard I

- Inefficient (dumb) concurrency is easy
 - Big fat lock around everything
 - Poor performance
- Efficient concurrency is hard
- A concurrent program should
 - Function correctly
 - Maximize throughput
 - Finish as many tasks as possible
 - Minimize latency
 - Respond to requests as soon as possible
 - While handling nondeterminism in the environment

Concurrency is Hard II

- Huge number of possible thread interleavings/schedules
- Concurrent program with n threads where each thread has k instructions has

 $(n^*k)! / (k!)^n \ge (n!)^k$

interleavings

- Exponential in both n and k!
- Example: 5 threads with 5 instruction each

$$25! / 5!^5 = 6.2336074e + 14$$

= 623 trillion interleavings

Concurrency is Hard III

- Concurrent executions (thread interleavings) are highly nondeterminisitic
- Stress testing
 - Trying to explore many different thread interleavings by creating hundreds of threads
- Stress testing is highly inefficient
 - Some concurrency bugs occur only in certain thread interleavings
 - Finding the "right" thread interleaving is pure luck
 - No notion of coverage
 - Running for days, even months

Concurrency Bugs

- Rare thread interleavings result in Heisenbugs
 - Difficult to find, reproduce, and debug
- Observing the bug can "fix" it
 - E.g., likelihood of interleavings changes when you add printf statements
- A huge productivity problem
 - Developers and testers can spend weeks chasing a single Heisenbug

Model Checking I

- Model checking is
 - checking whether a program satisfies a property by exploring its state space
 - systematic state-space exploration = exhaustive testing
 - checking whether a system satisfies a temporal-logic formula

Model Checking II

- Simple, automatic, and yet effective technique for finding bugs in high-level hardware and software models
- Invented in the early 1980s
- 2008 Turing Award
 - Edmund M. Clarke, E. Allen Emerson, Joseph Sifakis

Software Model Checking Evolution

- General model checkers
 - Examples: Spin, SMV, Murphi
 - Custom input specification languages
 - Require translation of the program into the input language of the model checker
 - Not automated
 - Ad-hoc simplifications and abstractions
- Specialized software model checkers
 - Work directly on source code
 - Input language is a programming language
 - Well-defined techniques for restricting the state space
 - Automated abstraction techniques

Simple Example

int x, y;

Thread 1: 1) x = 1; 2) y = 2; 3) x++; 4) y++; Thread 2: 5) y = 3; 6) x = 2; 7) y++; 8) x++;

Explicit-State Model Checking of Programs

- Verisoft from Bell Labs
 - C programs
 - Handles concurrency, bounded search, bounded recursion
 - Uses stateless search and partial order reduction
- Java Path Finder (JPF) from NASA Ames
 - Java programs
 - Handles concurrency, bounded search, bounded recursion
 - Uses techniques similar to the ones in Spin
- CMC from Stanford for checking systems code written in C

Java Path Finder (JPF)

- Program checker for Java
- Properties to be verified
 - Program assertions
 - LTL properties
- Depth-first and breadth-first search, heuristics
 - Uses static analysis techniques to improve the efficiency of the search
- Requires a complete Java program
 - Cannot handle native code

JPF: First Version

- Translate from Java into the input language of Spin (Promela)
- Spin cannot handle unbounded data
 - Restrict the program to finite domains
 - Fixed number of objects from each class
 - Fixed bounds for array sizes
- Does not scale well when these fixed bounds are increased
- Java source code is required for translation

JPF: Current Version

- Implements its own virtual machine
 - Executes Java bytecode
 - Doesn't need source code
 - Stores visited states and current path
 - Exposes various "knobs" to the user to optimize verification
- Traversal algorithm
 - Traverses the state-graph of the program
 - Tells VM to move forward, backward in the state space, evaluate an assertion,...

Storing Program States

- JPF implements a systematic search on the state space of the given Java program
 - Systematic search requires storing visited states
- Program state consists of
 - Information for each program thread
 - Stack of frames, one for each called method
 - Static fields in classes
 - Locks and fields for classes
 - Dynamic fields in objects
 - Locks and fields for objects

Storing States Efficiently

- Intuition: different states have common parts
- Divide each state into a set of components and store them separately
- Keep a pool for each component
 - A table of field values, lock values, frame values
- Instead of storing the value of a component in a state, store an index at which the component is stored in the table in the state
 - The whole state becomes an integer vector
- JPF collapses states to integer vectors using this idea

State Space Explosion

- Major challenge in model checking
- Reduce the number of states that have to be visited during state space exploration

Combating State Space Explosion

- Symmetry reduction
 - Search equivalent states only once
- Partial order reduction
 - Do not search thread interleavings that generate equivalent behavior
- Static analyses
 - Reduce state space using static analyses
- User-provided restrictions
 - Manually bound variable domains, array sizes,...

Symmetry Reduction

- Some states of the program may be equivalent
 Equivalent states should be searched only once
- Some states may differ only in their memory layout, the order objects are created, etc.
 - May not have any effect on program behavior

Symmetry Reduction in JPF

- Order in which classes are loaded shouldn't effect the state
 - There is a canonical ordering of classes
- Location of dynamically allocated heap objects shouldn't effect the state
 - If we store the memory location as the state, then we can miss equivalent states which have different memory layouts
 - Store some information about the new statements and the number of times they are executed

Simple Symmetry Example

int x, y;
Foo a, b;

Thread 1:
1) a = new Foo();
2) x = 1;
3) y = 2;
4) x++;
5) y++;

Thread 2:

- 5) b = new Foo();
- 6) y = 3;

7)
$$X = 2;$$

- 8) y++;
- 9) X++;

Partial Order Reduction

- Statements of concurrently executing threads can generate many different interleavings
 - All these different interleavings are allowable behavior of the program
- Model checker checks all possible interleavings for errors
 - But different interleavings may generate equivalent behaviors
- Partial order reduction
 - It is sufficient to check just one representative interleaving

Simple POR Example

int x, y;

Thread 1: int a; 1) a = 5;2) a++; 3) X = 1;4) y = 2;5) X++; 6) **y++;**

Thread 2: int b; 5) b = 10;6) b--; 7) y = 3;8) X = 2;9) Y++; 10) X++;

Static Analysis in JPF

- Using static analysis techniques to reduce the state space
 - Slicing
 - Partial evaluation

Static Analysis in JPF

- Slicing
 - Remove program parts with no effect on the slicing criterion
 - A slicing criterion could be a program point
 - Program slices are computed using dependency analysis
- Partial evaluation
 - Propagate constant values and simplify expressions

User-Provided Restrictions

- To improve scalability, users can restrict domains of variables, sizes of arrays,...
- Restrictions under-approximate program behaviors
 - May result in missed errors
 - Still useful in finding bugs

Next Time

 Checking concurrent programs using symbolic techniques