
Lecture 15

Explicit State Checkers

Zvonimir Rakamarić
University of Utah

CS 5110/6110 – Rigorous System Design | Spring 2017

Mar-9

Last Time

 SMT solvers

This Time

 Checking concurrent programs using explicit-

state model checking

Concurrency is Pervasive

 Old problem of computer science

 Ancient supercomputers

 Today

 Multi-cores even in cell phones

 Many-cores in desktops

 Most programs are concurrent

 At least the ones you care about

Concurrency is Hard I

 Inefficient (dumb) concurrency is easy

 Big fat lock around everything

 Poor performance

 Efficient concurrency is hard

 A concurrent program should

 Function correctly

 Maximize throughput

 Finish as many tasks as possible

 Minimize latency

 Respond to requests as soon as possible

 While handling nondeterminism in the environment

Concurrency is Hard II

 Huge number of possible thread

interleavings/schedules

 Concurrent program with n threads where each

thread has k instructions has

(n*k)! / (k!)n ¸ (n!)k

 interleavings

 Exponential in both n and k!

 Example: 5 threads with 5 instruction each

25! / 5!5 = 6.2336074e+14

 = 623 trillion interleavings

Concurrency is Hard III

 Concurrent executions (thread interleavings)

are highly nondeterminisitic

 Stress testing

 Trying to explore many different thread

interleavings by creating hundreds of threads

 Stress testing is highly inefficient

 Some concurrency bugs occur only in certain

thread interleavings

 Finding the “right” thread interleaving is pure luck

 No notion of coverage

 Running for days, even months

Concurrency Bugs

 Rare thread interleavings result in Heisenbugs

 Difficult to find, reproduce, and debug

 Observing the bug can “fix” it

 E.g., likelihood of interleavings changes when you

add printf statements

 A huge productivity problem

 Developers and testers can spend weeks chasing

a single Heisenbug

Model Checking I

 Model checking is

 checking whether a program satisfies a property by

exploring its state space

 systematic state-space exploration = exhaustive

testing

 checking whether a system satisfies a temporal-logic

formula

Model Checking II

 Simple, automatic, and yet effective technique

for finding bugs in high-level hardware and

software models

 Invented in the early 1980s

 2008 Turing Award

 Edmund M. Clarke, E. Allen Emerson, Joseph

Sifakis

Software Model Checking Evolution

 General model checkers
 Examples: Spin, SMV, Murphi

 Custom input specification languages

 Require translation of the program into the input
language of the model checker
 Not automated

 Ad-hoc simplifications and abstractions

 Specialized software model checkers
 Work directly on source code

 Input language is a programming language

 Well-defined techniques for restricting the state
space

 Automated abstraction techniques

Simple Example

int x, y;

Thread 1:

1) x = 1;

2) y = 2;

3) x++;

4) y++;

Thread 2:

5) y = 3;

6) x = 2;

7) y++;

8) x++;

Explicit-State Model Checking of Programs

 Verisoft from Bell Labs

 C programs

 Handles concurrency, bounded search, bounded

recursion

 Uses stateless search and partial order reduction

 Java Path Finder (JPF) from NASA Ames

 Java programs

 Handles concurrency, bounded search, bounded

recursion

 Uses techniques similar to the ones in Spin

 CMC from Stanford for checking systems code

written in C

Java Path Finder (JPF)

 Program checker for Java

 Properties to be verified

 Program assertions

 LTL properties

 Depth-first and breadth-first search, heuristics

 Uses static analysis techniques to improve the

efficiency of the search

 Requires a complete Java program

 Cannot handle native code

JPF: First Version

 Translate from Java into the input language of
Spin (Promela)

 Spin cannot handle unbounded data
 Restrict the program to finite domains

 Fixed number of objects from each class

 Fixed bounds for array sizes

 Does not scale well when these fixed bounds
are increased

 Java source code is required for translation

JPF: Current Version

 Implements its own virtual machine
 Executes Java bytecode

 Doesn’t need source code

 Stores visited states and current path
 Exposes various “knobs” to the user to optimize

verification

 Traversal algorithm
 Traverses the state-graph of the program
 Tells VM to move forward, backward in the
 state space, evaluate an assertion,…

Storing Program States

 JPF implements a systematic search on the

state space of the given Java program

 Systematic search requires storing visited states

 Program state consists of

 Information for each program thread

 Stack of frames, one for each called method

 Static fields in classes

 Locks and fields for classes

 Dynamic fields in objects

 Locks and fields for objects

Storing States Efficiently

 Intuition: different states have common parts

 Divide each state into a set of components and
store them separately

 Keep a pool for each component
 A table of field values, lock values, frame values

 Instead of storing the value of a component in a
state, store an index at which the component is
stored in the table in the state
 The whole state becomes an integer vector

 JPF collapses states to integer vectors using
this idea

State Space Explosion

 Major challenge in model checking

 Reduce the number of states that have to be

visited during state space exploration

Combating State Space Explosion

 Symmetry reduction

 Search equivalent states only once

 Partial order reduction

 Do not search thread interleavings that generate

equivalent behavior

 Static analyses

 Reduce state space using static analyses

 User-provided restrictions

 Manually bound variable domains, array sizes,…

Symmetry Reduction

 Some states of the program may be equivalent
 Equivalent states should be searched only once

 Some states may differ only in their memory
layout, the order objects are created, etc.
 May not have any effect on program behavior

Symmetry Reduction in JPF

 Order in which classes are loaded shouldn’t
effect the state
 There is a canonical ordering of classes

 Location of dynamically allocated heap objects

shouldn’t effect the state

 If we store the memory location as the state, then

we can miss equivalent states which have different

memory layouts

 Store some information about the new statements

and the number of times they are executed

Simple Symmetry Example

int x, y;

Foo a, b;

Thread 1:

1) a = new Foo();

2) x = 1;

3) y = 2;

4) x++;

5) y++;

Thread 2:

5) b = new Foo();

6) y = 3;

7) x = 2;

8) y++;

9) x++;

Partial Order Reduction

 Statements of concurrently executing threads

can generate many different interleavings

 All these different interleavings are allowable

behavior of the program

 Model checker checks all possible interleavings

for errors

 But different interleavings may generate equivalent

behaviors

 Partial order reduction

 It is sufficient to check just one representative

interleaving

Simple POR Example

int x, y;

Thread 1:

int a;

1) a = 5;

2) a++;

3) x = 1;

4) y = 2;

5) x++;

6) y++;

Thread 2:

int b;

5) b = 10;

6) b--;

7) y = 3;

8) x = 2;

9) y++;

10)x++;

Static Analysis in JPF

 Using static analysis techniques to reduce the

state space

 Slicing

 Partial evaluation

Static Analysis in JPF

 Slicing

 Remove program parts with no effect on the slicing

criterion

 A slicing criterion could be a program point

 Program slices are computed using dependency

analysis

 Partial evaluation

 Propagate constant values and simplify expressions

User-Provided Restrictions

 To improve scalability, users can restrict
domains of variables, sizes of arrays,…

 Restrictions under-approximate program
behaviors
 May result in missed errors

 Still useful in finding bugs

Next Time

 Checking concurrent programs using symbolic

techniques

