CS 5110/6110 — Rigorous System Design | Spring 2017
Mar-9

Lecture 15

Explicit State Checkers

Zvonimir Rakamaric¢
University of Utah



Last Time

» SMT solvers



This Time

» Checking concurrent programs using explicit-
state model checking




Concurrency Is Pervasive

» Old problem of computer science
Ancient supercomputers

» Today
Multi-cores even in cell phones
Many-cores in desktops

» Most programs are concurrent
At least the ones you care about



Concurrency Is Hard |

» Inefficient (dumb) concurrency is easy
Big fat lock around everything
Poor performance

» Efficient concurrency is hard

» A concurrent program should
Function correctly
Maximize throughput
Finish as many tasks as possible

Minimize latency
Respond to reguests as soon as possible

While handling nondeterminism in the environment



Concurrency Is Hard |

» Huge number of possible thread
Interleavings/schedules

» Concurrent program with n threads where each
thread has k instructions has

(n*k)! / (k" > (nh)k
Interleavings
» Exponential in both n and k!
» Example: 5 threads with 5 instruction each
25! /51> =6.2336074e+14
= 623 trillion interleavings



Concurrency Is Hard Il

» Concurrent executions (thread interleavings)
are highly nondeterminisitic

» Stress testing

Trying to explore many different thread
Interleavings by creating hundreds of threads

» Stress testing Is highly inefficient

Some concurrency bugs occur only in certain
thread interleavings
Finding the “right” thread interleaving is pure luck
No notion of coverage
Running for days, even months



Concurrency Bugs

» Rare thread interleavings result in Heisenbugs
Difficult to find, reproduce, and debug

» Observing the bug can *fix” it

E.qg., likelihood of interleavings changes when you
add printf statements

» A huge productivity problem

Developers and testers can spend weeks chasing
a single Heisenbug



Model Checking |

» Model checking Is

checking whether a program satisfies a property by
exploring its state space

systematic state-space exploration = exhaustive
testing

checking whether a system satisfies a temporal-logic
formula



Model Checking I

» Simple, automatic, and yet effective technique
for finding bugs in high-level hardware and
software models

» Invented in the early 1980s

» 2008 Turing Award

Edmund M. Clarke, E. Allen Emerson, Joseph
Sifakis




Software Model Checking Evolution

» General model checkers
Examples: Spin, SMV, Murphi
Custom input specification languages

Require translation of the program into the input
language of the model checker

Not automated
Ad-hoc simplifications and abstractions

» Specialized software model checkers
Work directly on source code
Input language is a programming language
Well-defined techniques for restricting the state
space
Automated abstraction techniques



Simple Example

int x, vy;

Thread 1:
1) X = 1;
2) Yy = 2;
3) X++;
4) y++,

Thread 2:
5) Y = 3;
6) X = 2;
7) y++,
8) X++;



Explicit-State Model Checking of Programs

» Verisoft from Bell Labs
C programs

Handles concurrency, bounded search, bounded
recursion

Uses stateless search and partial order reduction

» Java Path Finder (JPF) from NASA Ames
Java programs

Handles concurrency, bounded search, bounded
recursion

Uses techniques similar to the ones in Spin

» CMC from Stanford for checking systems code
written in C



Java Path Finder (JPF)

» Program checker for Java

» Properties to be verified
Program assertions
LTL properties
» Depth-first and breadth-first search, heuristics

Uses static analysis techniques to improve the
efficiency of the search

» Requires a complete Java program
Cannot handle native code



JPF: First Version

» Translate from Java into the input language of
Spin (Promela)
» Spin cannot handle unbounded data

Restrict the program to finite domains
Fixed number of objects from each class
Fixed bounds for array sizes

» Does not scale well when these fixed bounds
are increased

» Java source code is required for translation




JPF: Current Version

» Implements its own virtual machine

Executes Java bytecode
Doesn’t need source code

Stores visited states and current path

Exposes various "knobs” to the user to optimize
verification

» Traversal algorithm
Traverses the state-graph of the program
Tells VM to move forward, backward in the
state space, evaluate an assertion,...



Storing Program States

» JPF implements a systematic search on the
state space of the given Java program

Systematic search requires storing visited states

» Program state consists of
Information for each program thread
Stack of frames, one for each called method

Static fields Iin classes
Locks and fields for classes

Dynamic fields in objects
Locks and fields for objects



Storing States Efficiently

» Intuition: different states have common parts

» Divide each state into a set of components and
store them separately
» Keep a pool for each component
A table of field values, lock values, frame values
» Instead of storing the value of a component in a

state, store an index at which the component is
stored in the table In the state

The whole state becomes an integer vector

» JPF collapses states to integer vectors using
this idea



State Space Explosion

» Major challenge in model checking

» Reduce the number of states that have to be
visited during state space exploration



Combating State Space Explosion

» Symmetry reduction
Search equivalent states only once

» Partial order reduction

Do not search thread interleavings that generate
equivalent behavior

» Static analyses
Reduce state space using static analyses

» User-provided restrictions
Manually bound variable domains, array sizes,...



Symmetry Reduction

» Some states of the program may be equivalent
Equivalent states should be searched only once

» Some states may differ only in their memory
layout, the order objects are created, etc.

May not have any effect on program behavior



Symmetry Reduction in JPF

» Order in which classes are loaded shouldn’t
effect the state

There Is a canonical ordering of classes

» Location of dynamically allocated heap objects
shouldn’t effect the state

If we store the memory location as the state, then

we can miss equivalent states which have different
memory layouts

Store some information about the new statements
and the number of times they are executed



Simple Symmetry Example

int x, Vy;

Foo a, b;

Thread 1. Thread 2:

1) a = new Foo(); 5) b = new Foo();
2) X = 1; 6) y = 3;

3) Yy = 2; 7) X = 2;

4) X++; 8) yt+t;

5) Y++; 9) X++;



Partial Order Reduction

» Statements of concurrently executing threads
can generate many different interleavings

All these different interleavings are allowable
behavior of the program
» Model checker checks all possible interleavings
for errors
But different interleavings may generate equivalent
behaviors
» Partial order reduction

It is sufficient to check just one representative
Interleaving



Simple POR Example

int x, Vy;

Thread 1:
int a;
1) a = 5;
2) a++;
3) X = 1;
4y y = 2;
5) X++;

6) Y++;

Thread 2:
int b;

5) b = 10

6) b--;

7)Yy = 3,
2

8) X =
9) Y++;
10) X++

J

J

J



Static Analysis in JPF

» Using static analysis techniques to reduce the
state space

Slicing
Partial evaluation



Static Analysis in JPF

» Slicing
Remove program parts with no effect on the slicing
criterion

A slicing criterion could be a program point

Program slices are computed using dependency
analysis

» Partial evaluation
Propagate constant values and simplify expressions



User-Provided Restrictions

» To Improve scalability, users can restrict
domains of variables, sizes of arrays,...

» Restrictions under-approximate program
behaviors
May result in missed errors
Still useful in finding bugs



Next Time

» Checking concurrent programs using symbolic
techniques



