
Lecture 14

SMT Solvers

Zvonimir Rakamarić
University of Utah

slides acknowledgements: Leonardo de Moura

CS 5110/6110 – Rigorous System Design | Spring 2017

Mar-2

This Time

 SMT solvers

 What are they?

 How they work?

Many Theories

 Theory of equality

 Peano arithmetic

 Presburger arithmetic

 Linear integer arithmetic

 Reals

 Rationals

 Arrays

 Recursive data structures

 …

Combination of Theories

 In practice, we often need a combination of

theories

 Example:

 x+2=y  f(select(store(a,x,3),y-2)=f(y-x+1)

 Problem: given satisfiability procedures for

conjunction of literals of Theory1 and Theory2,

how to decide satisfiability of their

combination?

Satisfiability Modulo Theories (SMT) Solver

 Satisfiability checker with built-in support for

useful theories

 Arithmetic

 Equality with uninterpreted functions

 Arrays

 …

 Combines a SAT solver with theory solvers

 Next generation of reasoning engines

 Automatic

 Fast

SMT Solvers, Library, Competition

 Solvers
 AProve, Barcelogic, Boolector, CVC4, MathSAT5,

OpenSMT, SMTInterpol, SOLONAR, STP2, veriT,
Yices, Z3

 SMT-LIB
 Standardizes various theories and input format

 Library of benchmarks

 http://www.smtlib.org

 SMT-COMP
 Annual competition

 http://www.smtcomp.org

http://www.smtlib.org/
http://www.smtcomp.org/

Applications

 Test case generation

 Verifying compilers

 Software verification

 Hardware verification

 Equivalence checking

 Type checking

 Model based testing

 Scheduling and planning

 …

Nelson-Oppen Combination Procedure

 Initial State

 F is a conjunction of literals over Σ1 ∪ Σ2

 Purification

 Preserving satisfiability transform F into F1 Æ F2,

such that Fi ∈ Σi

 Interaction

 Deduce an equality x = y if F1  x = y, where x and

y are common (shared) variables

 Update F2 := F2 Æ x = y

 And vice-versa

 Repeat until no further changes

Nelson-Oppen Combination Procedure

 Component procedures

 Use individual decision procedures to decide

whether Fi is satisfiable

 Return

 If both return yes, return yes

 No, otherwise

 Remark:

Fi  x = y iff Fi Æ x  y is not satisfiable

Purification Example

f(x – 1) – 1 = x Æ f(y) + 1 = y

Nelson-Oppen Procedure Example I

x + y = z Æ f(z) = z Æ f(x + y)  z

Nelson-Oppen Procedure Example II

x+2=y Æ f(select(store(a,x,3), y – 2))  f(y – x + 1)

Building an Efficient Solver

Eager Approach

 Translate formula into equisatisfiable

propositional formula and use off-the-shelf SAT

solver

 Why “eager”?

 Search uses all theory information from the

beginning

 Can use best available SAT solver

 Sophisticated encodings are need for each

theory

 Sometimes translation and/or solving too slow

Lazy Approach: SAT + Theories I

 Independently developed by several groups

 CVC (Stanford)

 ICS (SRI)

 MathSAT (Univ. Trento, Italy)

 Verifun (HP)

 Motivated by the breakthroughs in SAT solving

 DPLL algorithm

 Various optimizations and heuristics

Lazy Approach: SAT + Theories II

 SAT solver

 Manages the boolean structure and assigns truth

values to the atoms in a formula

 Theory solvers

 Efficiently validate (partial) assignments produced

by the SAT solver

 When a theory solver detects unsatisfiability, a

new clause (lemma) is created

Naïve Approach

 Example
 Suppose SAT solver assigns

{x = y → T, y = z → T, f(x) = f(z) → F}

 Theory solver detects conflict

 Lemma is created
¬(x = y) ∨ ¬(y = z) ∨ f(x) = f(z)

 Potential problems
 Lemmas are imprecise (not minimal)

 Theory solver is “passive”
 It just detects conflicts

 There is no propagation step

 Backtracking is expensive
 Restart from scratch when a conflict is detected

Theory Solvers

 Basic requirements

 Deduce equalities between variables

 Compute lemmas (conflict sets)

 As precise as possible

 Extra desired features

 Theory propagation

 Incrementality

 Backtracking

Equality Generation

 Combination of theories strongly relies on the

propagation of deduced equalities

 Every theory solver has to support it

Precise Lemmas I

 Example

 {a1 = T, a2 = F, a3 = F} is inconsistent

 Lemma is ¬a1 ∨ a2 ∨ a3

 An inconsistent set A is redundant if A′ ⊂ A is

also inconsistent

 Redundant inconsistent sets imply

 Imprecise lemmas

 Ineffective pruning of the search space

Precise Lemmas II

 Noise of a redundant set is A \ Amin

 Imprecise lemma is useless in any partial

assignment where an atom in the noise has a

different assignment

 Example

 Suppose a1 is in the noise

 Then ¬a1 ∨ a2 ∨ a3 is useless when a1 = F

Theory Propagation

 SAT solver is assigning truth values to the

atoms in a formula

 Partial assignment produced by the SAT solver

may imply truth values of unassigned atoms

 Example

 x = y ∧ y = z ∧ (f(x)  f(z) ∨ f(x) = f(w))

 Partial assignment {x = y → T, y = z → T}

implies f(x) = f(z)

 Reduces the number of conflicts and the

search space

Incrementality

 Theory solvers constantly receive new

constraints and restart the process

 Augmented partial assignments from SAT solver

 Equalities coming from other theory solvers

 Do not restart from scratch

 Reuse what you learned so far

Efficient Backtracking

 One of the most important improvements in

SAT was efficient backtracking

 Extreme (inefficient) approach in theory solvers

 Restart from scratch on every conflict

 Efficient approach

 Restore to a logically equivalent state

 Backtracking should be included in the design

of theory solvers

Ideal Theory Solver

 Efficient in real benchmarks

 Produces precise lemmas

 Supports theory propagation

 Incremental

 Efficient backtracking

Dealing with Quantifiers

Quantifier Instantiation

 SMT solvers use heuristic quantifier
instantiation using E-matching (matching
modulo equalities)

 Divide input formula into ground and quantified
portion

 Check ground portion for satisfiability
 If SAT then extend with ground terms instantiated

from the quantified part

 Often leverage user-provided triggers

 If UNSAT then report UNSAT

 Repeat

Example

∀ x: f(g(x)) = x { f(g(x)) } (trigger)

a = g(b),

b = c,

f(a)  c

Limitations

 Users often have to manually provide patterns

 Automatic inference of patterns is fragile

 Bad user provided patterns

 False positives (wrong SAT answers)

 Nonterminating executions

Trigger too Restrictive

∀ x: f(g(x)) = x { f(g(x)) }

g(a) = c,

g(b) = c,

a  b

 Results in false positives

Trigger too Restrictive

 More “liberal” pattern:

∀ x: f(g(x)) = x { g(x) }

g(a) = c,

g(b) = c,

a  b

 Instantiate:

f(g(a)) = a,

f(g(b)) = b

 Implies that a=b

Matching Loop

∀ x: f(x) = g(f(x)) { f(x) }

∀ x: g(x) = f(g(x)) { g(x) }

f(a) = c

 Instantiate:

f(a) = g(f(a))

g(f(a)) = f(g(f(a)))

…

 Results in executions that do not terminate

