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This Time 

 SMT solvers 

 What are they? 

 How they work? 



Many Theories 

 Theory of equality 

 Peano arithmetic 

 Presburger arithmetic 

 Linear integer arithmetic 

 Reals 

 Rationals 

 Arrays 

 Recursive data structures 

 … 



Combination of Theories 

 In practice, we often need a combination of 

theories 

 Example: 

 x+2=y  f(select(store(a,x,3),y-2)=f(y-x+1) 

 Problem: given satisfiability procedures for 

conjunction of literals of Theory1 and Theory2, 

how to decide satisfiability of their 

combination? 



Satisfiability Modulo Theories (SMT) Solver 

 Satisfiability checker with built-in support for 

useful theories 

 Arithmetic 

 Equality with uninterpreted functions 

 Arrays 

 … 

 Combines a SAT solver with theory solvers 

 Next generation of reasoning engines 

 Automatic 

 Fast 



SMT Solvers, Library, Competition 

 Solvers 
 AProve, Barcelogic, Boolector, CVC4, MathSAT5, 

OpenSMT, SMTInterpol, SOLONAR, STP2, veriT, 
Yices, Z3 

 SMT-LIB 
 Standardizes various theories and input format 

 Library of benchmarks 

 http://www.smtlib.org 

 SMT-COMP 
 Annual competition 

 http://www.smtcomp.org 

http://www.smtlib.org/
http://www.smtcomp.org/


Applications 

 Test case generation 

 Verifying compilers 

 Software verification 

 Hardware verification 

 Equivalence checking 

 Type checking 

 Model based testing 

 Scheduling and planning 

 … 



Nelson-Oppen Combination Procedure 

 Initial State 

 F is a conjunction of literals over Σ1 ∪ Σ2 

 Purification 

 Preserving satisfiability transform F into F1 Æ F2, 

such that Fi ∈ Σi 

 Interaction 

 Deduce an equality x = y if F1  x = y, where x and 

y are common (shared) variables 

 Update F2 := F2 Æ x = y 

 And vice-versa 

 Repeat until no further changes 



Nelson-Oppen Combination Procedure 

 Component procedures 

 Use individual decision procedures to decide 

whether Fi is satisfiable 

 Return 

 If both return yes, return yes 

 No, otherwise 

 

 

 Remark: 

Fi  x = y  iff  Fi Æ x  y is not satisfiable 



Purification Example 

f(x – 1) – 1 = x Æ f(y) + 1 = y 



Nelson-Oppen Procedure Example I 

x + y = z Æ f(z) = z Æ f(x + y)  z 



Nelson-Oppen Procedure Example II 

x+2=y Æ f(select(store(a,x,3), y – 2))  f(y – x + 1) 



Building an Efficient Solver 



Eager Approach 

 Translate formula into equisatisfiable 

propositional formula and use off-the-shelf SAT 

solver 

 Why “eager”? 

 Search uses all theory information from the 

beginning 

 Can use best available SAT solver 

 Sophisticated encodings are need for each 

theory 

 Sometimes translation and/or solving too slow 



Lazy Approach: SAT + Theories I 

 Independently developed by several groups 

 CVC (Stanford) 

 ICS (SRI) 

 MathSAT (Univ. Trento, Italy) 

 Verifun (HP) 

 Motivated by the breakthroughs in SAT solving 

 DPLL algorithm 

 Various optimizations and heuristics 



Lazy Approach: SAT + Theories II 

 SAT solver 

 Manages the boolean structure and assigns truth 

values to the atoms in a formula 

 Theory solvers 

 Efficiently validate (partial) assignments produced 

by the SAT solver 

 When a theory solver detects unsatisfiability, a 

new clause (lemma) is created 





Naïve Approach 

 Example 
 Suppose SAT solver assigns 

{x = y → T, y = z → T, f(x) = f(z) → F} 

 Theory solver detects conflict 

 Lemma is created 
¬(x = y) ∨ ¬(y = z) ∨ f(x) = f(z) 

 Potential problems 
 Lemmas are imprecise (not minimal) 

 Theory solver is “passive” 
 It just detects conflicts 

 There is no propagation step 

 Backtracking is expensive 
 Restart from scratch when a conflict is detected 



Theory Solvers 

 Basic requirements 

 Deduce equalities between variables 

 Compute lemmas (conflict sets) 

 As precise as possible 

 Extra desired features 

 Theory propagation 

 Incrementality 

 Backtracking 



Equality Generation 

 Combination of theories strongly relies on the 

propagation of deduced equalities 

 Every theory solver has to support it 



Precise Lemmas I 

 Example 

 {a1 = T, a2 = F, a3 = F} is inconsistent 

 Lemma is ¬a1 ∨ a2 ∨ a3 

 An inconsistent set A is redundant if A′ ⊂ A is 

also inconsistent 

 Redundant inconsistent sets imply 

 Imprecise lemmas 

 Ineffective pruning of the search space 



Precise Lemmas II 

 Noise of a redundant set is A \ Amin 

 Imprecise lemma is useless in any partial 

assignment where an atom in the noise has a 

different assignment 

 Example 

 Suppose a1 is in the noise 

 Then ¬a1 ∨ a2 ∨ a3 is useless when a1 = F 



Theory Propagation 

 SAT solver is assigning truth values to the 

atoms in a formula 

 Partial assignment produced by the SAT solver 

may imply truth values of unassigned atoms 

 Example 

 x = y ∧ y = z ∧ (f(x)  f(z) ∨ f(x) = f(w)) 

 Partial assignment {x = y → T, y = z → T} 

implies f(x) = f(z) 

 Reduces the number of conflicts and the 

search space 



Incrementality 

 Theory solvers constantly receive new 

constraints and restart the process 

 Augmented partial assignments from SAT solver 

 Equalities coming from other theory solvers 

 Do not restart from scratch 

 Reuse what you learned so far 



Efficient Backtracking 

 One of the most important improvements in 

SAT was efficient backtracking 

 Extreme (inefficient) approach in theory solvers 

 Restart from scratch on every conflict 

 Efficient approach 

 Restore to a logically equivalent state 

 Backtracking should be included in the design 

of theory solvers 



Ideal Theory Solver 

 Efficient in real benchmarks 

 Produces precise lemmas 

 Supports theory propagation 

 Incremental 

 Efficient backtracking 



Dealing with Quantifiers 



Quantifier Instantiation 

 SMT solvers use heuristic quantifier 
instantiation using E-matching (matching 
modulo equalities) 

 Divide input formula into ground and quantified 
portion 

 Check ground portion for satisfiability 
 If SAT then extend with ground terms instantiated 

from the quantified part 

 Often leverage user-provided triggers 

 If UNSAT then report UNSAT 

 Repeat 



Example 

∀ x: f(g(x)) = x { f(g(x)) } (trigger) 

a = g(b), 

b = c, 

f(a)  c 



Limitations 

 Users often have to manually provide patterns 

 Automatic inference of patterns is fragile 

 Bad user provided patterns 

 False positives (wrong SAT answers) 

 Nonterminating executions 



Trigger too Restrictive 

∀ x: f(g(x)) = x { f(g(x)) } 

g(a) = c, 

g(b) = c, 

a  b 

 

 Results in false positives 



Trigger too Restrictive 

 More “liberal” pattern: 

∀ x: f(g(x)) = x { g(x) } 

g(a) = c, 

g(b) = c, 

a  b 

 Instantiate: 

f(g(a)) = a, 

f(g(b)) = b 

 Implies that a=b 



Matching Loop 

∀ x: f(x) = g(f(x))  { f(x)  } 

∀ x: g(x) = f(g(x)) { g(x) } 

f(a) = c 

 

 Instantiate: 

f(a) = g(f(a)) 

g(f(a)) = f(g(f(a))) 

… 

 

 Results in executions that do not terminate 


