Lecture 14 SMT Solvers

Zvonimir Rakamarić University of Utah

This Time

, SMT solvers
What are they? How they work?

Many Theories

- Theory of equality
- Peano arithmetic
- Presburger arithmetic
- Linear integer arithmetic
- Reals
- Rationals
- Arrays
- Recursive data structures

Combination of Theories

- In practice, we often need a combination of theories
- Example:
$x+2=y \rightarrow f($ select $($ store $(a, x, 3), y-2)=f(y-x+1)$
- Problem: given satisfiability procedures for conjunction of literals of Theory ${ }_{1}$ and Theory ${ }_{2}$, how to decide satisfiability of their combination?

Satisfiability Modulo Theories (SMT) Solver

- Satisfiability checker with built-in support for useful theories
- Arithmetic
- Equality with uninterpreted functions
- Arrays
- Combines a SAT solver with theory solvers
- Next generation of reasoning engines
- Automatic
- Fast

SMT Solvers, Library, Competition

- Solvers
- AProve, Barcelogic, Boolector, CVC4, MathSAT5, OpenSMT, SMTInterpol, SOLONAR, STP2, veriT, Yices, Z3
- SMT-LIB
- Standardizes various theories and input format
, Library of benchmarks
- http://www.smtlib.org
- SMT-COMP
- Annual competition
- http://www.smtcomp.org

Applications

- Test case generation
- Verifying compilers
- Software verification
- Hardware verification
- Equivalence checking
- Type checking
- Model based testing
- Scheduling and planning

Nelson-Oppen Combination Procedure

- Initial State
- F is a conjunction of literals over $\Sigma_{1} \cup \Sigma_{2}$
- Purification
- Preserving satisfiability transform F into $F_{1} \wedge F_{2}$, such that $F_{i} \in \Sigma_{i}$
- Interaction
- Deduce an equality $x=y$ if $F_{1} \rightarrow x=y$, where x and y are common (shared) variables
- Update $F_{2}:=F_{2} \wedge x=y$
- And vice-versa
- Repeat until no further changes

Nelson-Oppen Combination Procedure

- Component procedures
- Use individual decision procedures to decide whether F_{i} is satisfiable
- Return
- If both return yes, return yes
- No, otherwise
- Remark:
$F_{i} \rightarrow x=y$ iff $F_{i} \wedge x \neq y$ is not satisfiable

Purification Example

$$
f(x-1)-1=x \wedge f(y)+1=y
$$

Nelson-Oppen Procedure Example I

$$
x+y=z \wedge f(z)=z \wedge f(x+y) \neq z
$$

Nelson-Oppen Procedure Example II
$x+2=y \wedge f($ select $($ store $(a, x, 3), y-2)) \neq f(y-x+1)$

Building an Efficient Solver

Eager Approach

- Translate formula into equisatisfiable propositional formula and use off-the-shelf SAT solver
- Why "eager"?
- Search uses all theory information from the beginning
- Can use best available SAT solver
- Sophisticated encodings are need for each theory
- Sometimes translation and/or solving too slow

Lazy Approach: SAT + Theories I

- Independently developed by several groups
- CVC (Stanford)
- ICS (SRI)
- MathSAT (Univ. Trento, Italy)
- Verifun (HP)
- Motivated by the breakthroughs in SAT solving
, DPLL algorithm
- Various optimizations and heuristics

Lazy Approach: SAT + Theories II

- SAT solver
- Manages the boolean structure and assigns truth values to the atoms in a formula
- Theory solvers
- Efficiently validate (partial) assignments produced by the SAT solver
- When a theory solver detects unsatisfiability, a new clause (lemma) is created

Basic architecture

Naïve Approach

- Example
- Suppose SAT solver assigns $\{x=y \rightarrow T, y=z \rightarrow T, f(x)=f(z) \rightarrow F\}$
- Theory solver detects conflict
- Lemma is created
$\neg(x=y) \vee \neg(y=z) \vee f(x)=f(z)$
- Potential problems
, Lemmas are imprecise (not minimal)
Theory solver is "passive"
- It just detects conflicts
- There is no propagation step
- Backtracking is expensive
- Restart from scratch when a conflict is detected

Theory Solvers

- Basic requirements
- Deduce equalities between variables
, Compute lemmas (conflict sets)
, As precise as possible
- Extra desired features
- Theory propagation
- Incrementality
- Backtracking

Equality Generation

- Combination of theories strongly relies on the propagation of deduced equalities
- Every theory solver has to support it

Precise Lemmas I

- Example
- $\left\{a_{1}=T, a_{2}=F, a_{3}=F\right\}$ is inconsistent
- Lemma is $\neg a_{1} \vee a_{2} \vee a_{3}$
- An inconsistent set A is redundant if $A^{\prime} \subset A$ is also inconsistent
- Redundant inconsistent sets imply
- Imprecise lemmas
- Ineffective pruning of the search space

Precise Lemmas II

- Noise of a redundant set is $A \backslash A_{\text {min }}$
- Imprecise lemma is useless in any partial assignment where an atom in the noise has a different assignment
- Example

Suppose a_{1} is in the noise

- Then $\neg a_{1} \vee a_{2} \vee a_{3}$ is useless when $a_{1}=F$

Theory Propagation

- SAT solver is assigning truth values to the atoms in a formula
- Partial assignment produced by the SAT solver may imply truth values of unassigned atoms
- Example
$x=y \wedge y=z \wedge(f(x) \neq f(z) \vee f(x)=f(w))$
Partial assignment $\{x=y \rightarrow T, y=z \rightarrow T\}$ implies $f(x)=f(z)$
- Reduces the number of conflicts and the search space

Incrementality

- Theory solvers constantly receive new constraints and restart the process
- Augmented partial assignments from SAT solver
- Equalities coming from other theory solvers
- Do not restart from scratch
- Reuse what you learned so far

Efficient Backtracking

- One of the most important improvements in SAT was efficient backtracking
- Extreme (inefficient) approach in theory solvers
- Restart from scratch on every conflict
- Efficient approach
- Restore to a logically equivalent state
- Backtracking should be included in the design of theory solvers

Ideal Theory Solver

- Efficient in real benchmarks
- Produces precise lemmas
- Supports theory propagation
- Incremental
- Efficient backtracking

Dealing with Quantifiers

Quantifier Instantiation

- SMT solvers use heuristic quantifier instantiation using E-matching (matching modulo equalities)
- Divide input formula into ground and quantified portion
- Check ground portion for satisfiability * If SAT then extend with ground terms instantiated from the quantified part
, Often leverage user-provided triggers - If UNSAT then report UNSAT
- Repeat

Example

$\forall \mathrm{x}: \mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{x}\{\mathrm{f}(\mathrm{g}(\mathrm{x}))\}$ (trigger)
$a=g(b)$,
$\mathrm{b}=\mathrm{c}$,
$f(a) \neq c$

Limitations

- Users often have to manually provide patterns
- Automatic inference of patterns is fragile
- Bad user provided patterns
, False positives (wrong SAT answers)
- Nonterminating executions

Trigger too Restrictive

$\forall \mathrm{x}: \mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{x}\{\mathrm{f}(\mathrm{g}(\mathrm{x}))\}$
$g(a)=c$,
$g(b)=c$,
$\mathrm{a} \neq \mathrm{b}$

- Results in false positives

Trigger too Restrictive

- More "liberal" pattern:
$\forall x: f(g(x))=x\{g(x)\}$
$g(a)=c$,
$g(b)=c$,
$a \neq b$
- Instantiate:
$\mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{a}$,
$\mathrm{f}(\mathrm{g}(\mathrm{b}))=\mathrm{b}$
- Implies that $\mathrm{a}=\mathrm{b}$

Matching Loop

$\forall x: f(x)=g(f(x))\{f(x)\}$
$\forall x: g(x)=f(g(x))\{g(x)\}$
$f(a)=c$

- Instantiate:
$f(a)=g(f(a))$
$g(f(a))=f(g(f(a)))$
- Results in executions that do not terminate

