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This Time 

 SMT solvers 

 What are they? 

 How they work? 



Many Theories 

 Theory of equality 

 Peano arithmetic 

 Presburger arithmetic 

 Linear integer arithmetic 

 Reals 

 Rationals 

 Arrays 

 Recursive data structures 

 … 



Combination of Theories 

 In practice, we often need a combination of 

theories 

 Example: 

 x+2=y  f(select(store(a,x,3),y-2)=f(y-x+1) 

 Problem: given satisfiability procedures for 

conjunction of literals of Theory1 and Theory2, 

how to decide satisfiability of their 

combination? 



Satisfiability Modulo Theories (SMT) Solver 

 Satisfiability checker with built-in support for 

useful theories 

 Arithmetic 

 Equality with uninterpreted functions 

 Arrays 

 … 

 Combines a SAT solver with theory solvers 

 Next generation of reasoning engines 

 Automatic 

 Fast 



SMT Solvers, Library, Competition 

 Solvers 
 AProve, Barcelogic, Boolector, CVC4, MathSAT5, 

OpenSMT, SMTInterpol, SOLONAR, STP2, veriT, 
Yices, Z3 

 SMT-LIB 
 Standardizes various theories and input format 

 Library of benchmarks 

 http://www.smtlib.org 

 SMT-COMP 
 Annual competition 

 http://www.smtcomp.org 

http://www.smtlib.org/
http://www.smtcomp.org/


Applications 

 Test case generation 

 Verifying compilers 

 Software verification 

 Hardware verification 

 Equivalence checking 

 Type checking 

 Model based testing 

 Scheduling and planning 

 … 



Nelson-Oppen Combination Procedure 

 Initial State 

 F is a conjunction of literals over Σ1 ∪ Σ2 

 Purification 

 Preserving satisfiability transform F into F1 Æ F2, 

such that Fi ∈ Σi 

 Interaction 

 Deduce an equality x = y if F1  x = y, where x and 

y are common (shared) variables 

 Update F2 := F2 Æ x = y 

 And vice-versa 

 Repeat until no further changes 



Nelson-Oppen Combination Procedure 

 Component procedures 

 Use individual decision procedures to decide 

whether Fi is satisfiable 

 Return 

 If both return yes, return yes 

 No, otherwise 

 

 

 Remark: 

Fi  x = y  iff  Fi Æ x  y is not satisfiable 



Purification Example 

f(x – 1) – 1 = x Æ f(y) + 1 = y 



Nelson-Oppen Procedure Example I 

x + y = z Æ f(z) = z Æ f(x + y)  z 



Nelson-Oppen Procedure Example II 

x+2=y Æ f(select(store(a,x,3), y – 2))  f(y – x + 1) 



Building an Efficient Solver 



Eager Approach 

 Translate formula into equisatisfiable 

propositional formula and use off-the-shelf SAT 

solver 

 Why “eager”? 

 Search uses all theory information from the 

beginning 

 Can use best available SAT solver 

 Sophisticated encodings are need for each 

theory 

 Sometimes translation and/or solving too slow 



Lazy Approach: SAT + Theories I 

 Independently developed by several groups 

 CVC (Stanford) 

 ICS (SRI) 

 MathSAT (Univ. Trento, Italy) 

 Verifun (HP) 

 Motivated by the breakthroughs in SAT solving 

 DPLL algorithm 

 Various optimizations and heuristics 



Lazy Approach: SAT + Theories II 

 SAT solver 

 Manages the boolean structure and assigns truth 

values to the atoms in a formula 

 Theory solvers 

 Efficiently validate (partial) assignments produced 

by the SAT solver 

 When a theory solver detects unsatisfiability, a 

new clause (lemma) is created 





Naïve Approach 

 Example 
 Suppose SAT solver assigns 

{x = y → T, y = z → T, f(x) = f(z) → F} 

 Theory solver detects conflict 

 Lemma is created 
¬(x = y) ∨ ¬(y = z) ∨ f(x) = f(z) 

 Potential problems 
 Lemmas are imprecise (not minimal) 

 Theory solver is “passive” 
 It just detects conflicts 

 There is no propagation step 

 Backtracking is expensive 
 Restart from scratch when a conflict is detected 



Theory Solvers 

 Basic requirements 

 Deduce equalities between variables 

 Compute lemmas (conflict sets) 

 As precise as possible 

 Extra desired features 

 Theory propagation 

 Incrementality 

 Backtracking 



Equality Generation 

 Combination of theories strongly relies on the 

propagation of deduced equalities 

 Every theory solver has to support it 



Precise Lemmas I 

 Example 

 {a1 = T, a2 = F, a3 = F} is inconsistent 

 Lemma is ¬a1 ∨ a2 ∨ a3 

 An inconsistent set A is redundant if A′ ⊂ A is 

also inconsistent 

 Redundant inconsistent sets imply 

 Imprecise lemmas 

 Ineffective pruning of the search space 



Precise Lemmas II 

 Noise of a redundant set is A \ Amin 

 Imprecise lemma is useless in any partial 

assignment where an atom in the noise has a 

different assignment 

 Example 

 Suppose a1 is in the noise 

 Then ¬a1 ∨ a2 ∨ a3 is useless when a1 = F 



Theory Propagation 

 SAT solver is assigning truth values to the 

atoms in a formula 

 Partial assignment produced by the SAT solver 

may imply truth values of unassigned atoms 

 Example 

 x = y ∧ y = z ∧ (f(x)  f(z) ∨ f(x) = f(w)) 

 Partial assignment {x = y → T, y = z → T} 

implies f(x) = f(z) 

 Reduces the number of conflicts and the 

search space 



Incrementality 

 Theory solvers constantly receive new 

constraints and restart the process 

 Augmented partial assignments from SAT solver 

 Equalities coming from other theory solvers 

 Do not restart from scratch 

 Reuse what you learned so far 



Efficient Backtracking 

 One of the most important improvements in 

SAT was efficient backtracking 

 Extreme (inefficient) approach in theory solvers 

 Restart from scratch on every conflict 

 Efficient approach 

 Restore to a logically equivalent state 

 Backtracking should be included in the design 

of theory solvers 



Ideal Theory Solver 

 Efficient in real benchmarks 

 Produces precise lemmas 

 Supports theory propagation 

 Incremental 

 Efficient backtracking 



Dealing with Quantifiers 



Quantifier Instantiation 

 SMT solvers use heuristic quantifier 
instantiation using E-matching (matching 
modulo equalities) 

 Divide input formula into ground and quantified 
portion 

 Check ground portion for satisfiability 
 If SAT then extend with ground terms instantiated 

from the quantified part 

 Often leverage user-provided triggers 

 If UNSAT then report UNSAT 

 Repeat 



Example 

∀ x: f(g(x)) = x { f(g(x)) } (trigger) 

a = g(b), 

b = c, 

f(a)  c 



Limitations 

 Users often have to manually provide patterns 

 Automatic inference of patterns is fragile 

 Bad user provided patterns 

 False positives (wrong SAT answers) 

 Nonterminating executions 



Trigger too Restrictive 

∀ x: f(g(x)) = x { f(g(x)) } 

g(a) = c, 

g(b) = c, 

a  b 

 

 Results in false positives 



Trigger too Restrictive 

 More “liberal” pattern: 

∀ x: f(g(x)) = x { g(x) } 

g(a) = c, 

g(b) = c, 

a  b 

 Instantiate: 

f(g(a)) = a, 

f(g(b)) = b 

 Implies that a=b 



Matching Loop 

∀ x: f(x) = g(f(x))  { f(x)  } 

∀ x: g(x) = f(g(x)) { g(x) } 

f(a) = c 

 

 Instantiate: 

f(a) = g(f(a)) 

g(f(a)) = f(g(f(a))) 

… 

 

 Results in executions that do not terminate 


