
Lecture 14

SMT Solvers

Zvonimir Rakamarić
University of Utah

slides acknowledgements: Leonardo de Moura

CS 5110/6110 – Rigorous System Design | Spring 2017

Mar-2

This Time

 SMT solvers

 What are they?

 How they work?

Many Theories

 Theory of equality

 Peano arithmetic

 Presburger arithmetic

 Linear integer arithmetic

 Reals

 Rationals

 Arrays

 Recursive data structures

 …

Combination of Theories

 In practice, we often need a combination of

theories

 Example:

 x+2=y f(select(store(a,x,3),y-2)=f(y-x+1)

 Problem: given satisfiability procedures for

conjunction of literals of Theory1 and Theory2,

how to decide satisfiability of their

combination?

Satisfiability Modulo Theories (SMT) Solver

 Satisfiability checker with built-in support for

useful theories

 Arithmetic

 Equality with uninterpreted functions

 Arrays

 …

 Combines a SAT solver with theory solvers

 Next generation of reasoning engines

 Automatic

 Fast

SMT Solvers, Library, Competition

 Solvers
 AProve, Barcelogic, Boolector, CVC4, MathSAT5,

OpenSMT, SMTInterpol, SOLONAR, STP2, veriT,
Yices, Z3

 SMT-LIB
 Standardizes various theories and input format

 Library of benchmarks

 http://www.smtlib.org

 SMT-COMP
 Annual competition

 http://www.smtcomp.org

http://www.smtlib.org/
http://www.smtcomp.org/

Applications

 Test case generation

 Verifying compilers

 Software verification

 Hardware verification

 Equivalence checking

 Type checking

 Model based testing

 Scheduling and planning

 …

Nelson-Oppen Combination Procedure

 Initial State

 F is a conjunction of literals over Σ1 ∪ Σ2

 Purification

 Preserving satisfiability transform F into F1 Æ F2,

such that Fi ∈ Σi

 Interaction

 Deduce an equality x = y if F1 x = y, where x and

y are common (shared) variables

 Update F2 := F2 Æ x = y

 And vice-versa

 Repeat until no further changes

Nelson-Oppen Combination Procedure

 Component procedures

 Use individual decision procedures to decide

whether Fi is satisfiable

 Return

 If both return yes, return yes

 No, otherwise

 Remark:

Fi x = y iff Fi Æ x y is not satisfiable

Purification Example

f(x – 1) – 1 = x Æ f(y) + 1 = y

Nelson-Oppen Procedure Example I

x + y = z Æ f(z) = z Æ f(x + y) z

Nelson-Oppen Procedure Example II

x+2=y Æ f(select(store(a,x,3), y – 2)) f(y – x + 1)

Building an Efficient Solver

Eager Approach

 Translate formula into equisatisfiable

propositional formula and use off-the-shelf SAT

solver

 Why “eager”?

 Search uses all theory information from the

beginning

 Can use best available SAT solver

 Sophisticated encodings are need for each

theory

 Sometimes translation and/or solving too slow

Lazy Approach: SAT + Theories I

 Independently developed by several groups

 CVC (Stanford)

 ICS (SRI)

 MathSAT (Univ. Trento, Italy)

 Verifun (HP)

 Motivated by the breakthroughs in SAT solving

 DPLL algorithm

 Various optimizations and heuristics

Lazy Approach: SAT + Theories II

 SAT solver

 Manages the boolean structure and assigns truth

values to the atoms in a formula

 Theory solvers

 Efficiently validate (partial) assignments produced

by the SAT solver

 When a theory solver detects unsatisfiability, a

new clause (lemma) is created

Naïve Approach

 Example
 Suppose SAT solver assigns

{x = y → T, y = z → T, f(x) = f(z) → F}

 Theory solver detects conflict

 Lemma is created
¬(x = y) ∨ ¬(y = z) ∨ f(x) = f(z)

 Potential problems
 Lemmas are imprecise (not minimal)

 Theory solver is “passive”
 It just detects conflicts

 There is no propagation step

 Backtracking is expensive
 Restart from scratch when a conflict is detected

Theory Solvers

 Basic requirements

 Deduce equalities between variables

 Compute lemmas (conflict sets)

 As precise as possible

 Extra desired features

 Theory propagation

 Incrementality

 Backtracking

Equality Generation

 Combination of theories strongly relies on the

propagation of deduced equalities

 Every theory solver has to support it

Precise Lemmas I

 Example

 {a1 = T, a2 = F, a3 = F} is inconsistent

 Lemma is ¬a1 ∨ a2 ∨ a3

 An inconsistent set A is redundant if A′ ⊂ A is

also inconsistent

 Redundant inconsistent sets imply

 Imprecise lemmas

 Ineffective pruning of the search space

Precise Lemmas II

 Noise of a redundant set is A \ Amin

 Imprecise lemma is useless in any partial

assignment where an atom in the noise has a

different assignment

 Example

 Suppose a1 is in the noise

 Then ¬a1 ∨ a2 ∨ a3 is useless when a1 = F

Theory Propagation

 SAT solver is assigning truth values to the

atoms in a formula

 Partial assignment produced by the SAT solver

may imply truth values of unassigned atoms

 Example

 x = y ∧ y = z ∧ (f(x) f(z) ∨ f(x) = f(w))

 Partial assignment {x = y → T, y = z → T}

implies f(x) = f(z)

 Reduces the number of conflicts and the

search space

Incrementality

 Theory solvers constantly receive new

constraints and restart the process

 Augmented partial assignments from SAT solver

 Equalities coming from other theory solvers

 Do not restart from scratch

 Reuse what you learned so far

Efficient Backtracking

 One of the most important improvements in

SAT was efficient backtracking

 Extreme (inefficient) approach in theory solvers

 Restart from scratch on every conflict

 Efficient approach

 Restore to a logically equivalent state

 Backtracking should be included in the design

of theory solvers

Ideal Theory Solver

 Efficient in real benchmarks

 Produces precise lemmas

 Supports theory propagation

 Incremental

 Efficient backtracking

Dealing with Quantifiers

Quantifier Instantiation

 SMT solvers use heuristic quantifier
instantiation using E-matching (matching
modulo equalities)

 Divide input formula into ground and quantified
portion

 Check ground portion for satisfiability
 If SAT then extend with ground terms instantiated

from the quantified part

 Often leverage user-provided triggers

 If UNSAT then report UNSAT

 Repeat

Example

∀ x: f(g(x)) = x { f(g(x)) } (trigger)

a = g(b),

b = c,

f(a) c

Limitations

 Users often have to manually provide patterns

 Automatic inference of patterns is fragile

 Bad user provided patterns

 False positives (wrong SAT answers)

 Nonterminating executions

Trigger too Restrictive

∀ x: f(g(x)) = x { f(g(x)) }

g(a) = c,

g(b) = c,

a b

 Results in false positives

Trigger too Restrictive

 More “liberal” pattern:

∀ x: f(g(x)) = x { g(x) }

g(a) = c,

g(b) = c,

a b

 Instantiate:

f(g(a)) = a,

f(g(b)) = b

 Implies that a=b

Matching Loop

∀ x: f(x) = g(f(x)) { f(x) }

∀ x: g(x) = f(g(x)) { g(x) }

f(a) = c

 Instantiate:

f(a) = g(f(a))

g(f(a)) = f(g(f(a)))

…

 Results in executions that do not terminate

