CS 5110/6110 – Rigorous System Design | Spring 2017 Mar-2

Lecture 14 SMT Solvers

Zvonimir Rakamarić University of Utah

slides acknowledgements: Leonardo de Moura

This Time

SMT solvers

- What are they?
- How they work?

Many Theories

- Theory of equality
- Peano arithmetic
- Presburger arithmetic
- Linear integer arithmetic
- Reals
- Rationals
- Arrays

Recursive data structures

Combination of Theories

- In practice, we often need a combination of theories
- Example:

 $x+2=y \rightarrow f(select(store(a,x,3),y-2)=f(y-x+1))$

Problem: given satisfiability procedures for conjunction of literals of Theory₁ and Theory₂, how to decide satisfiability of their combination?

Satisfiability Modulo Theories (SMT) Solver

- Satisfiability checker with built-in support for useful theories
 - Arithmetic
 - Equality with uninterpreted functions
 - Arrays
 - ...
- Combines a SAT solver with theory solvers
- Next generation of reasoning engines
 - Automatic
 - Fast

SMT Solvers, Library, Competition

Solvers

- AProve, Barcelogic, Boolector, CVC4, MathSAT5, OpenSMT, SMTInterpol, SOLONAR, STP2, veriT, Yices, Z3
- SMT-LIB
 - Standardizes various theories and input format
 - Library of benchmarks
 - http://www.smtlib.org

SMT-COMP

- Annual competition
- http://www.smtcomp.org

Applications

- Test case generation
- Verifying compilers
- Software verification
- Hardware verification
- Equivalence checking
- Type checking

. . .

- Model based testing
- Scheduling and planning

Nelson-Oppen Combination Procedure

- Initial State
 - F is a conjunction of literals over $\Sigma_1 \cup \Sigma_2$
- Purification
 - Preserving satisfiability transform F into $F_1 \wedge F_2$, such that $F_i \in \Sigma_i$
- Interaction
 - Deduce an equality x = y if $F_1 \rightarrow x = y$, where x and y are common (shared) variables

• Update
$$F_2 := F_2 \land x = y$$

- And vice-versa
- Repeat until no further changes

Nelson-Oppen Combination Procedure

- Component procedures
 - Use individual decision procedures to decide whether F_i is satisfiable
- Return
 - If both return yes, return yes
 - No, otherwise

• Remark:

 $F_i \rightarrow x = y \ \text{ iff } \ F_i \wedge x \neq y \text{ is not satisfiable}$

Purification Example

$$f(x - 1) - 1 = x \land f(y) + 1 = y$$

Nelson-Oppen Procedure Example I $x + y = z \land f(z) = z \land f(x + y) \neq z$

Nelson-Oppen Procedure Example II

 $x+2=y \land \textit{f(select(store(a,x,3), y-2))} \neq \textit{f}(y-x+1)$

Building an Efficient Solver

Eager Approach

- Translate formula into equisatisfiable propositional formula and use off-the-shelf SAT solver
- Why "eager"?
 - Search uses all theory information from the beginning
- Can use best available SAT solver
- Sophisticated encodings are need for each theory
- Sometimes translation and/or solving too slow

Lazy Approach: SAT + Theories I

- Independently developed by several groups
 - CVC (Stanford)
 - ICS (SRI)
 - MathSAT (Univ. Trento, Italy)
 - Verifun (HP)
- Motivated by the breakthroughs in SAT solving
 - DPLL algorithm
 - Various optimizations and heuristics

Lazy Approach: SAT + Theories II

- SAT solver
 - Manages the boolean structure and assigns truth values to the atoms in a formula
- Theory solvers
 - Efficiently validate (partial) assignments produced by the SAT solver
- When a theory solver detects unsatisfiability, a new clause (lemma) is created

Basic architecture

Naïve Approach

Example

• Suppose SAT solver assigns $\{x = y \rightarrow T, y = z \rightarrow T, f(x) = f(z) \rightarrow F\}$

- Theory solver detects conflict
- Lemma is created

$$\neg(x = y) \lor \neg(y = z) \lor f(x) = f(z)$$

- Potential problems
 - Lemmas are imprecise (not minimal)
 - Theory solver is "passive"
 - It just detects conflicts
 - There is no propagation step
 - Backtracking is expensive
 - Restart from scratch when a conflict is detected

Theory Solvers

- Basic requirements
 - Deduce equalities between variables
 - Compute lemmas (conflict sets)
 - As precise as possible
- Extra desired features
 - Theory propagation
 - Incrementality
 - Backtracking

Equality Generation

- Combination of theories strongly relies on the propagation of deduced equalities
- Every theory solver has to support it

Precise Lemmas I

- Example
 - $\{a_1 = T, a_2 = F, a_3 = F\}$ is inconsistent
 - Lemma is $\neg a_1 \lor a_2 \lor a_3$
- An inconsistent set A is redundant if A' ⊂ A is also inconsistent
- Redundant inconsistent sets imply
 - Imprecise lemmas
 - Ineffective pruning of the search space

Precise Lemmas II

- Noise of a redundant set is $A \setminus A_{min}$
- Imprecise lemma is useless in any partial assignment where an atom in the noise has a different assignment
- Example
 - Suppose a₁ is in the noise
 - Then $\neg a_1 \lor a_2 \lor a_3$ is useless when $a_1 = F$

Theory Propagation

- SAT solver is assigning truth values to the atoms in a formula
- Partial assignment produced by the SAT solver may imply truth values of unassigned atoms
- Example

$$x = y \land y = z \land (f(x) \neq f(z) \lor f(x) = f(w))$$

Partial assignment { $x = y \rightarrow T, y = z \rightarrow T$ }
implies $f(x) = f(z)$

Reduces the number of conflicts and the search space

Incrementality

- Theory solvers constantly receive new constraints and restart the process
 - Augmented partial assignments from SAT solver
 - Equalities coming from other theory solvers
- Do not restart from scratch
 - Reuse what you learned so far

Efficient Backtracking

- One of the most important improvements in SAT was efficient backtracking
- Extreme (inefficient) approach in theory solvers
 - Restart from scratch on every conflict
- Efficient approach
 - Restore to a logically equivalent state
- Backtracking should be included in the design of theory solvers

Ideal Theory Solver

- Efficient in real benchmarks
- Produces precise lemmas
- Supports theory propagation
- Incremental
- Efficient backtracking

Dealing with Quantifiers

Quantifier Instantiation

- SMT solvers use heuristic quantifier instantiation using E-matching (matching modulo equalities)
- Divide input formula into ground and quantified portion
- Check ground portion for satisfiability
 - If SAT then extend with ground terms instantiated from the quantified part
 - Often leverage user-provided triggers
 - If UNSAT then report UNSAT
- Repeat

Example

```
\forall x: f(g(x)) = x \{ f(g(x)) \} (trigger)
a = g(b),
b = c,
f(a) \ne c
```

Limitations

- Users often have to manually provide patterns
 - Automatic inference of patterns is fragile
- Bad user provided patterns
 - False positives (wrong SAT answers)
 - Nonterminating executions

Trigger too Restrictive

```
\forall x: f(g(x)) = x { f(g(x)) }
g(a) = c,
g(b) = c,
a ≠ b
```

Results in false positives

Trigger too Restrictive

- More "liberal" pattern:
 ∀ x: f(g(x)) = x { g(x) }
 g(a) = c,
 g(b) = c,
 a ≠ b
- Instantiate:
 f(g(a)) = a,
 f(g(b)) = b
- Implies that a=b

Matching Loop

$$\forall x: f(x) = g(f(x)) \{ f(x) \}$$

 $\forall x: g(x) = f(g(x)) \{ g(x) \}$
 $f(a) = c$

Instantiate:
 f(a) = g(f(a))
 g(f(a)) = f(g(f(a)))

Results in executions that do not terminate