
Lecture 9

Verification Conditions II

Zvonimir Rakamarić
University of Utah

CS 5110/6110 – Rigorous System Design | Spring 2017

Feb-14

Announcements

 Project brainstorming session in class on

Thursday

 Present your project idea(s) in 2-3 minutes

 Informal discussion and feedback

 Message me if more feedback needed

 Project proposals are due on Feb 23

 Write at most 1 page per team describing your

project plan. The proposal should include: project

title, list of team members, short description of

related work, and proposed work with basic

milestones.

 Posted homework 3 – due in a week

Last Time

 Simple command language

 Basic verification condition generation

 Weakest preconditions

Simple Command Language

x := E

havoc x

assert P

assume P

S ; T [sequential composition]

S T [choice statement]

Weakest Preconditions Cookbook

 wp(x := E, Q) = Q[E / x]

 wp(havoc x, Q) = (∀ x . Q)

 wp(assert P, Q) = P Æ Q

 wp(assume P, Q) = P Q

 wp(S ; T, Q) = wp(S, wp(T, Q))

 wp(S T, Q) = wp(S, Q) Æ wp(T, Q)

Checking Correctness with wp

{true}

wp(x := 1, x + 2 = 3) = 1 + 2 = 3 Æ true

x := 1;

wp(y := x + 2, y = 3) = x + 2 = 3 Æ true

y := x + 2;

wp(assert y = 3, true) = y = 3 Æ true

assert y = 3;

{true}

Check: true 1 + 2 = 3 Æ true

Structured if Statement

 Just a “syntactic sugar”:

 if E then S else T

 gets desugared into

 (assume E ; S) (assume :E ; T)

This Time

 Design by contract

 Procedures

Design by Contract

 Also called assume-guarantee reasoning

 Developers annotate software components with
contracts (formal specifications)
 Document developer’s intent

 Complex system verification broken down into
compositional verification of each component

 Typical contracts
 Annotations on procedure boundaries

 Preconditions

 Postconditions

 Annotations on loop boundaries
 Loop invariants

Design by Contract cont.

 First used in Eiffel [Bertrand Meyer]

 Native support:

 Eiffel, Racket, SPARK Ada, Spec#, Dafny,…

 Third-party support:

 Code Contracts project for .NET

 Java Modeling Language

 Contracts for Python

 contracts.ruby

 …

 Runtime or static checking of contracts

Code Contracts Example

static int BinarySearch(int[] array, int value)

{

 Contract.Requires(array != null);

 …

}

Spec# Example

static int BinarySearch(int[] a, int key)

requires forall{int i in (0: a.Length), int j in

(i: a.Length); a[i] <= a[j]};

ensures 0 <= result ==> a[result] == key;

ensures result < 0 ==> forall{int i in (0:

a.Length); a[i] != key};

{

 …

}

Java Modeling Languge (JML) Example

class BankingExample {

 public static final int MAX_BAL = 1000;

 private int balance;

 //@ invariant balance >= 0 && balance <= MAX_BAL;

 //@ ensures balance == 0;

 public BankingExample() { this.balance = 0; }

 //@ requires 0 < amount && amount+balance < MAX_BAL;

 //@ ensures balance == \old(balance) + amount;

public void credit(int amount) {

 this.balance += amount;

 }

}

Assume-Guarantee Reasoning

 Example

 foo() {…}

 bar() {…foo();…}

 How to verify/check bar?

Assume-Guarantee Reasoning cont.

 Solution 1

 Inline foo

 Solution 2

 Write contract/specification P of foo

 Assume P when checking bar

 bar() {…assume P;…}

 Guarantee P when checking foo

 foo() {…assert P;}

 Pros/cons?

Procedure

 Procedure is a complex user-defined command

 procedure M(x,y,z) returns (r,s,t)

 requires P

 ensures Q

 {S}

 requires is a precondition

 Predicate P has to hold at procedure entry

 ensures is a postcondition

 Predicate Q has to hold at procedure exit

 S is procedure body (command)

 Note: assume procedures have no side-effects

Procedure Example

procedure abs(x) returns (abs_x)

requires -1000 < x && x < 1000

ensures abs_x >= 0

{

 if (x >= 0) {

 abs_x := x;

 } else {

 abs_x := -x;

 }

}

Desugaring Procedure Call

 procedure M(x,y,z) returns (r,s,t)

 requires P

 ensures Q

 {S}

 call a,b,c := M(E,F,G)

desugared into:

 x’ := E; y’ := F; z’ := G;

 assert P’;

 assume Q’;

 a := r’; b := s’; c := t’;

where:

•x’,y’,z’,r’,s’,t’ are fresh variables

•P’ is P with x’,y’,z’ for x,y,z

•Q’ is Q with x’,y’,z’,r’,s’,t’ for

x,y,z,r,s,t

Desugaring Call Example

procedure abs(x) returns (abs_x)

requires -1000 < x && x < 1000

ensures abs_x >= 0

{

 if (x >= 0) {

 abs_x := x;

 } else {

 abs_x := -x;

 }

}

call a := abs(b);

assert a >= 0;

Desugaring Call Example

Desugaring Procedure Implementation

 procedure M(x,y,z) returns (r,s,t)

 requires P

 ensures Q

 {S}

 Implementation is correct if this is correct:

 assume P;

 S;

 assert Q;

Desugaring Implementation Example

procedure abs(x) returns (abs_x)

requires -1000 < x && x < 1000

ensures abs_x >= 0

{

 if (x >= 0) {

 abs_x := x;

 } else {

 abs_x := -x;

 }

}

Desugaring Implementation Example

