
Lecture 8

Verification Conditions I

Zvonimir Rakamarić
University of Utah

CS 5110/6110 – Rigorous System Design | Spring 2017

Feb-7

Last Time

 Symbolic execution

 Concolic execution

 Playing with KLEE

This Time

 Verification condition generation

 Weakest precondition transformer

 Section 5 in our textbook

Basic Verifier Architecture

Program with
specifications
(assertions)

Verification
condition
generator

Verification
condition
(formula)

Theorem
prover

Program
correct or list

of errors

Verification Condition Generator

 Creates verification conditions (mathematical

logic formulas) from program’s source code

 If VC is valid – program is correct

 If VC is invalid – possible error in program

 Based on the theory of Hoare triples

 Formalization of software semantics for verification

 Verification conditions computed automatically

using weakest preconditions (wp)

Simple Command Language

x := E

havoc x

assert P

assume P

S ; T [sequential composition]

S  T [choice statement]

Program States

 Program state s

 Assignment of values (of proper type) to all

program variables

 Sometimes includes program counter variable pc

 Holds current program location

 Example

s : (x  -1, y  1)

s : (pc  L, a  0, i  3)

 Reachable state is a state that can be reached

during some computation

Program States cont.

 A set of program states can be described using

a FOL formula

 Example

Set of states:

s : { (x  1), (x  2), (x  3) }

FOL formulas defining s:

x = 1 Ç x = 2 Ç x = 3

0 < x Æ x < 4 [if x is integer]

Hoare Triple

 S is a command

 P is a precondition – formula about program

state before S executes

 Q is a postcondition – formula about program

state after S executes

{ P } S { Q }

 Used for reasoning about (program) executions

Hoare Triple Definition

 When a state s satisfies precondition P, every

terminating execution of command S starting in s

 does not go wrong, and

 establishes postcondition Q

{ P } S { Q }

Hoare Triple Examples

 {a = 2} b := a + 3; {b > 0}

 {a = 2} b := a + 3; {b = 5}

 {a > 3} b := a + 3; {a > 0}

 {a = 2} b := a * a; {b > 0}

Weakest Precondition [Dijkstra]

 The most general (i.e., weakest) P that satisfies

{ P } S { Q }

 is called the weakest precondition of S with

respect to Q, written:

wp(S, Q)

 To check { P } S { Q } prove P  wp(S, Q)

 Example

{?P?} b := a + 3; {b > 0}

{a + 3 > 0} b := a + 3; {b > 0}

wp(b := a + 3, b > 0) = a + 3 > 0

Strongest Postcondition

 The strongest Q that satisfies

{ P } S { Q }

 is called the strongest postcondition of S with

respect to P, written:

sp(S, P)

 To check { P } S { Q } prove sp(S, P)  Q

 Strongest postcondition is (almost) a dual of

weakest precondition

Weakest Preconditions Cookbook

 wp(x := E, Q) = Q[E / x]

 wp(havoc x, Q) = (∀ x . Q)

 wp(assert P, Q) = P Æ Q

 wp(assume P, Q) = P  Q

 wp(S ; T, Q) = wp(S, wp(T, Q))

 wp(S  T, Q) = wp(S, Q) Æ wp(T, Q)

Checking Correctness with wp

{true}

x := 1;

y := x + 2;

assert y = 3;

{true}

Checking Correctness with wp cont.

{true}

wp(x := 1, x + 2 = 3) = 1 + 2 = 3 Æ true

x := 1;

wp(y := x + 2, y = 3) = x + 2 = 3 Æ true

y := x + 2;

wp(assert y = 3, true) = y = 3 Æ true

assert y = 3;

{true}

Check: true  1 + 2 = 3 Æ true

Example II

{x > 1}

y := x + 2;

assert y > 3;

{true}

Example II cont.

{x > 1}

wp(y := x + 2, y > 3) = x + 2 > 3

y := x + 2;

wp(assert y > 3, true) = y > 3 Æ true = y > 3

assert y > 3;

{true}

Check: x > 1  (x + 2 > 3)

Example III

{true}

assume x > 1;

y := x * 2;

z := x + 2;

assert y > z;

{true}

Example III cont.

{true}

wp(assume x > 1, x * 2 > x + 2) = x>1  x*2 > x+2

assume x > 1;

wp(y := x * 2, y > x + 2) = x * 2 > x + 2

y := x * 2;

wp(z := x + 2, y > z) = y > x + 2

z := x + 2;

wp(assert y > z, true) = y > z Æ true = y > z

assert y > z;

{true}

Structured if Statement

 Just a “syntactic sugar”:

 if E then S else T

 gets desugared into

 (assume E ; S)  (assume :E ; T)

Absolute Value Example

if (x >= 0) {

 abs_x := x;

} else {

 abs_x := -x;

}

assert abs_x >= 0;

Next Time

 Guest lecture on finding data races in

concurrent programs

 Next week

 Procedures

 Loops

 Loop invariants

