CS 5110/6110 — Rigorous System Design | Spring 2017
Feb-7

Lecture 8
Verification Conditions |

Zvonimir Rakamaric¢
University of Utah

Last Time

» Symbolic execution

» Concolic execution
Playing with KLEE

This Time

» Verification condition generation
» Weakest precondition transformer
» Section 5 In our textbook

Basic Verifier Architecture

../u

Verification Condition Generator

» Creates verification conditions (mathematical
logic formulas) from program’s source code
If VC Is valid — program Is correct
If VC Is invalid — possible error in program
» Based on the theory of Hoare triples
Formalization of software semantics for verification

» Verification conditions computed automatically
using weakest preconditions (wp)

Simple Command Language

X:=E

havoc X

assert P

assume P

S;T [sequential composition]
SUT [choice statement]

Program States

» Program state s

Assignment of values (of proper type) to all
program variables

Sometimes includes program counter variable pc
Holds current program location
» Example
S.:(X—-1,y— 1)
s:(pc—L,a—~0,i—3)
» Reachable state Is a state that can be reached
during some computation

Program States cont.

» A set of program states can be described using
a FOL formula

» Example

Set of states:
S {(X—1), X 2), X 3)}

FOL formulas defining s:
X=1VXx=2VXx=3
O<xAX<4 [if xisinteger]

Hoare Triple

» Used for reasoning about (program) executions

{P}S1Q}

» S Is a command

» P Is a precondition — formula about program
state before S executes

» Q Is a postcondition — formula about program
state after S executes

Hoare Triple Definition

{P}S1Q}

» When a state s satisfies precondition P, every
terminating execution of command S starting in s
does not go wrong, and
establishes postcondition Q

Hoare Triple Examples

»r{a=2}b:=a+3;{b>0}
r{a=2}b:=a+3;{b=5}
»{a>3}b:=a+ 3;{a>0}
r{a=2}b:=a*a; {b>0}

Weakest Precondition [Dijkstra]

» The most general (i.e., weakest) P that satisfies

{P}S{Q}
Is called the weakest precondition of S with
respect to Q, written:

wp(S, Q)
» Tocheck {P}S{Q} prove P - wp(S, Q)
» Example

{?P?} b:=a+ 3;{b>0}
{a+3>0} b:=a+3;{b>0}
wp(b:=a+3,b>0)=a+3>0

Strongest Postcondition

» The strongest Q that satisfies

{P}S{Q}
IS called the strongest postcondition of S with
respect to P, written:

sp(S, P)
» Tocheck {P}S{Q} prove sp(S, P)—> Q

» Strongest postcondition is (almost) a dual of
weakest precondition

Weakest Preconditions Cookbook

» W
» W
» W
» W
» W
» W

o(x:=E, Q)=
o(havoc x, Q) =
n(assert P, Q) =

o(assume P, Q) =
(ST, Q)=

o(SCT, Q)=

QIE/X]

(VX.Q)
PAQ

P—Q
wp(S, wp(T, Q))
wp(S, Q) A wp(T, Q)

Checking Correctness with wp
{true}

Checking Correctness with wp cont.

{true}
wp(x:=1,x+2=3)=1+2=3 Atrue
X = 1;

wp(y :=x+2,y=3)=x+2=3 Atrue
Vv 1= X + 2;

wp(asserty = 3, true) =y = 3 A true
assert y = 3;

{true}

Check: true > 1+ 2 =3 A true

Example Il
{x>1}

Vv 1= X + 2;

assert y > 3;
{true}

Example Il cont.

{x>1}
wp(y :=x+2,y>3)=x+2>3
Vv 1= X + 2;

wp(asserty > 3,true) =y >3 Atrue=y >3
assert y > 3;

{true}

Check:x>1—-> (x+2>23)

Example Il
{true}

assume x > 1;

assert vy > z;
{true}

Example Il cont.

{true}
wp(assume x> 1, X*2>x+ 2) = x>1 - X*2 > x+2

assume x > 1;

WPy =X*2,y>X+2)=Xx*2>X+2

y 1= X * 2
wWp(z =x+2,y>z2)=y>X+2
7 1= X + 2

wp(asserty >z, true) =y>z Atrue=y >z
assert vy > z;

{true}

Structured If Statement

» Just a “syntactic sugar’:
fEthenSelseT

gets desugared Into
(assume E ; S) [J (assume —E ; T)

Absolute Value Example

1f (x >= 0) {

abs x = x;
} else {
abs x = -x;

J

assert abs x >= 0;

Next Time

» Guest lecture on finding data races In
concurrent programs

» Next week
Procedures
Loops
Loop Iinvariants

