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Last Time 

 Symbolic execution 

 Concolic execution 

 Playing with KLEE 



This Time 

 Verification condition generation 

 Weakest precondition transformer 

 Section 5 in our textbook 



Basic Verifier Architecture 
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Verification Condition Generator 

 Creates verification conditions (mathematical 

logic formulas) from program’s source code 

 If VC is valid – program is correct 

 If VC is invalid – possible error in program 

 Based on the theory of Hoare triples 

 Formalization of software semantics for verification 

 Verification conditions computed automatically 

using weakest preconditions (wp) 



Simple Command Language  

x := E 

havoc x 

assert P 

assume P 

S ; T  [sequential composition] 

S  T  [choice statement] 



Program States 

 Program state s 

 Assignment of values (of proper type) to all 

program variables 

 Sometimes includes program counter variable pc 

 Holds current program location 

 Example 

s : (x  -1, y  1) 

s : (pc  L, a  0, i  3) 

 Reachable state is a state that can be reached 

during some computation 



Program States cont. 

 A set of program states can be described using 

a FOL formula 

 Example 

Set of states: 

s : { (x  1), (x  2), (x  3) } 

 

FOL formulas defining s: 

x = 1 Ç x = 2 Ç x = 3 

0 < x Æ x < 4 [if x is integer] 



Hoare Triple 

 S is a command 

 P is a precondition – formula about program 

state before S executes 

 Q is a postcondition – formula about program 

state after S executes 

{ P }  S  { Q } 

 Used for reasoning about (program) executions 



Hoare Triple Definition 

 When a state s satisfies precondition P, every 

terminating execution of command S starting in s 

 does not go wrong, and 

 establishes postcondition Q 

{ P }  S  { Q } 



Hoare Triple Examples 

 {a = 2} b := a + 3; {b > 0} 

 {a = 2} b := a + 3; {b = 5} 

 {a > 3} b := a + 3; {a > 0} 

 {a = 2} b := a * a;  {b > 0} 



Weakest Precondition [Dijkstra] 

 The most general (i.e., weakest) P that satisfies 

{ P } S { Q } 

 is called the weakest precondition of S with 

respect to Q, written: 

wp(S, Q) 

 To check { P } S { Q } prove P  wp(S, Q) 

 Example 

{?P?}  b := a + 3; {b > 0} 

{a + 3 > 0}  b := a + 3; {b > 0} 

wp(b := a + 3, b > 0) = a + 3 > 0 



Strongest Postcondition 

 The strongest Q that satisfies 

{ P } S { Q } 

 is called the strongest postcondition of S with 

respect to P, written: 

sp(S, P) 

 To check { P } S { Q } prove sp(S, P)  Q 

 Strongest postcondition is (almost) a dual of 

weakest precondition 



Weakest Preconditions Cookbook 

 wp( x := E,  Q ) =  Q[ E / x ] 

 wp( havoc x,  Q ) =  ( ∀ x . Q ) 

 wp( assert P,  Q ) =  P Æ Q 

 wp( assume P,  Q ) = P  Q 

 wp( S ; T,  Q ) =  wp( S,  wp( T, Q )) 

 wp( S  T,  Q ) =  wp(S, Q) Æ wp(T, Q) 



Checking Correctness with wp 

{true} 

 

x := 1; 

 

y := x + 2; 

 

assert y = 3; 

{true} 



Checking Correctness with wp cont. 

{true} 

wp(x := 1, x + 2 = 3) = 1 + 2 = 3 Æ true 

x := 1; 

wp(y := x + 2, y = 3) = x + 2 = 3 Æ true 

y := x + 2; 

wp(assert y = 3, true) = y = 3 Æ true 

assert y = 3; 

{true} 

 

Check: true  1 + 2 = 3 Æ true 



Example II 

{x > 1} 

 

y := x + 2; 

 

assert y > 3; 

{true} 



Example II cont. 

{x > 1} 

wp(y := x + 2, y > 3) = x + 2 > 3 

y := x + 2; 

wp(assert y > 3, true) = y > 3 Æ true = y > 3 

assert y > 3; 

{true} 

 

Check: x > 1  (x + 2 > 3) 



Example III 

{true} 

 

assume x > 1; 

 

y := x * 2; 

 

z := x + 2; 

 

assert y > z; 

{true} 



Example III cont. 

{true} 

wp(assume x > 1, x * 2 > x + 2) = x>1  x*2 > x+2 

assume x > 1; 

wp(y := x * 2, y > x + 2) = x * 2 > x + 2 

y := x * 2; 

wp(z := x + 2, y > z) = y > x + 2 

z := x + 2; 

wp(assert y > z, true) = y > z Æ true = y > z 

assert y > z; 

{true} 



Structured if Statement 

 Just a “syntactic sugar”: 

 if E then S else T 

 gets desugared into 

 (assume E ; S)  (assume :E ; T) 



Absolute Value Example 

 

if (x >= 0) { 

  abs_x := x; 

} else { 

  abs_x := -x; 

} 

assert abs_x >= 0; 



Next Time 

 Guest lecture on finding data races in 

concurrent programs 

 

 Next week 

 Procedures 

 Loops 

 Loop invariants 


