
Lecture 8

Verification Conditions I

Zvonimir Rakamarić
University of Utah

CS 5110/6110 – Rigorous System Design | Spring 2017

Feb-7

Last Time

 Symbolic execution

 Concolic execution

 Playing with KLEE

This Time

 Verification condition generation

 Weakest precondition transformer

 Section 5 in our textbook

Basic Verifier Architecture

Program with
specifications
(assertions)

Verification
condition
generator

Verification
condition
(formula)

Theorem
prover

Program
correct or list

of errors

Verification Condition Generator

 Creates verification conditions (mathematical

logic formulas) from program’s source code

 If VC is valid – program is correct

 If VC is invalid – possible error in program

 Based on the theory of Hoare triples

 Formalization of software semantics for verification

 Verification conditions computed automatically

using weakest preconditions (wp)

Simple Command Language

x := E

havoc x

assert P

assume P

S ; T [sequential composition]

S T [choice statement]

Program States

 Program state s

 Assignment of values (of proper type) to all

program variables

 Sometimes includes program counter variable pc

 Holds current program location

 Example

s : (x -1, y 1)

s : (pc L, a 0, i 3)

 Reachable state is a state that can be reached

during some computation

Program States cont.

 A set of program states can be described using

a FOL formula

 Example

Set of states:

s : { (x 1), (x 2), (x 3) }

FOL formulas defining s:

x = 1 Ç x = 2 Ç x = 3

0 < x Æ x < 4 [if x is integer]

Hoare Triple

 S is a command

 P is a precondition – formula about program

state before S executes

 Q is a postcondition – formula about program

state after S executes

{ P } S { Q }

 Used for reasoning about (program) executions

Hoare Triple Definition

 When a state s satisfies precondition P, every

terminating execution of command S starting in s

 does not go wrong, and

 establishes postcondition Q

{ P } S { Q }

Hoare Triple Examples

 {a = 2} b := a + 3; {b > 0}

 {a = 2} b := a + 3; {b = 5}

 {a > 3} b := a + 3; {a > 0}

 {a = 2} b := a * a; {b > 0}

Weakest Precondition [Dijkstra]

 The most general (i.e., weakest) P that satisfies

{ P } S { Q }

 is called the weakest precondition of S with

respect to Q, written:

wp(S, Q)

 To check { P } S { Q } prove P wp(S, Q)

 Example

{?P?} b := a + 3; {b > 0}

{a + 3 > 0} b := a + 3; {b > 0}

wp(b := a + 3, b > 0) = a + 3 > 0

Strongest Postcondition

 The strongest Q that satisfies

{ P } S { Q }

 is called the strongest postcondition of S with

respect to P, written:

sp(S, P)

 To check { P } S { Q } prove sp(S, P) Q

 Strongest postcondition is (almost) a dual of

weakest precondition

Weakest Preconditions Cookbook

 wp(x := E, Q) = Q[E / x]

 wp(havoc x, Q) = (∀ x . Q)

 wp(assert P, Q) = P Æ Q

 wp(assume P, Q) = P Q

 wp(S ; T, Q) = wp(S, wp(T, Q))

 wp(S T, Q) = wp(S, Q) Æ wp(T, Q)

Checking Correctness with wp

{true}

x := 1;

y := x + 2;

assert y = 3;

{true}

Checking Correctness with wp cont.

{true}

wp(x := 1, x + 2 = 3) = 1 + 2 = 3 Æ true

x := 1;

wp(y := x + 2, y = 3) = x + 2 = 3 Æ true

y := x + 2;

wp(assert y = 3, true) = y = 3 Æ true

assert y = 3;

{true}

Check: true 1 + 2 = 3 Æ true

Example II

{x > 1}

y := x + 2;

assert y > 3;

{true}

Example II cont.

{x > 1}

wp(y := x + 2, y > 3) = x + 2 > 3

y := x + 2;

wp(assert y > 3, true) = y > 3 Æ true = y > 3

assert y > 3;

{true}

Check: x > 1 (x + 2 > 3)

Example III

{true}

assume x > 1;

y := x * 2;

z := x + 2;

assert y > z;

{true}

Example III cont.

{true}

wp(assume x > 1, x * 2 > x + 2) = x>1 x*2 > x+2

assume x > 1;

wp(y := x * 2, y > x + 2) = x * 2 > x + 2

y := x * 2;

wp(z := x + 2, y > z) = y > x + 2

z := x + 2;

wp(assert y > z, true) = y > z Æ true = y > z

assert y > z;

{true}

Structured if Statement

 Just a “syntactic sugar”:

 if E then S else T

 gets desugared into

 (assume E ; S) (assume :E ; T)

Absolute Value Example

if (x >= 0) {

 abs_x := x;

} else {

 abs_x := -x;

}

assert abs_x >= 0;

Next Time

 Guest lecture on finding data races in

concurrent programs

 Next week

 Procedures

 Loops

 Loop invariants

