CS 5110/6110 — Rigorous System Design | Spring 2017
Jan-31

Lecture 6
Symbolic Execution

Zvonimir Rakamaric¢
University of Utah



Symbolic Testing

» Symbolic execution
» Concolic execution



Past and Present of Symbolic Testing

» Introduced in 1976 by James King from IBM
T.J. Watson Research Center
Implemented in EFFIGY — symbolic execution for a
PL/l-like language
» Still very active area of research
SAGE, Pex [MSR]
KLEE [Stanford]
JDart [NASA, CMU, Utah]
BitScope [Berkeley]
CUTE [UIUC]
Calysto [UBC]
Saturn [Stanford]



Program Paths

» Program path refers to a path in the control-
flow graph of the program

» Program path is feasible if there exists an input
to the program that “covers” the path

When the program is executed with this input, the
path is taken

» Program path is infeasible if there exists no
Input that covers the path




Infeasible Paths

» Infeasible path does not imply dead code
» Dead code implies infeasible path

» Example:
if (x > 0) {.}
else {..}

;f (x > 10) {..}
else {..}

;f (x < -10) {..}
else {..}



Traditional Testing

» Real software has lots of infeasible paths

» Traditional testing does not scale when there Is
a large number of infeasible paths to the target
location that needs to be covered



Symbolic Execution

» Key Idea: execution of programs using
symbolic input values instead of concrete data

» Concrete vs symbolic

Concrete execution

Program takes only one path determined by input
values

Symbolic execution
Program can (in theory) take any feasible path
Limited by the power of constraint solver

Scalability issues when faced with large (exponential)
number of paths — path explosion



Symbolic Program State

» Symbolic values of program variables

» Path condition (PC)
Logical formula over symbolic inputs

Accumulates constraints that inputs have to satisfy
for the particular path to be executed

If a path Is feasible its PC Is satisfiable
» Program location



Symbolic Execution Tree

» Characterizes execution paths constructed
during symbolic execution

» Nodes are symbolic program states
» Edges are labeled with program transitions



Example |

1) int x, y;

2) if (x > y) {
3) X =X +VY;
4) y = X-=-1Y,
5) X =X -Y;
6) if (x > y)
7) assert false;

8) }



Concrete Execution

»Xx=4,y=3



Constructed Symbolic Execution Tree |

xX:X, y:Y
PC:true
AM\a'SeA
X:X, y:Y X: X, y:Y
PC:X>Y PC: X<=Y
lSAT SAT
X:X+Y, y:Y
PC:X>Y
X:X+Y, y:X
PC:X>Y
x:Y, y:X
PC:X>Y
M
x:Y, y:X XY, y:X
PC:X>Y A Y>X PC:X>Y A Y<=X

UNSAT SAT



Example Il

int foo(int a, int b) {
int k = a - b;
b

int t = a + b + 3;
if (a % 2 == 0) {
a = b++;
if (t > 9)
k =t - 2;
}
if (a + 6 > k)
b =5;

if (t + a + b == 20)
assert false;
return t + a + b;



Constructed Symbolic Execution Tree Il



Path Explosion Problem |

int g1, g2;

int init(int x) { void scale() {
... // Lots of paths g2 = init(gl);
} if (flip(&g2)) {
if (g2 == 09)
bool flip(int *data) { assert false;
if (xdata < 0) { gl = g1/g2;
xdata = -(*data); }
return true; }
}

return false;

}



Solution: Structural Abstraction

» Key Iidea: abstract function calls by replacing
them with uninterpreted functions

» Algorithm
Replace function calls with uninterpreted functions
If error Is not reachable
Done

If error Is reachable
Analyze error path

Perform on-demand abstraction refinement by replacing
an uninterpreted function with the actual callee



Path Explosion Problem |

int g1, g2;

int init(int x) { void scale() {
... // Lots of paths g2 = init(gl);
} if (flip(&g2)) {
if (g2 == 09)
bool flip(int *data) { assert false;
if (xdata < 0) { gl = g1/g2;
xdata = -(*data); }
return true; }
}

return false;

}



Path Explosion Problem Il

int abs(int x) {
if (x >= @) return x;
else return -x;

int sumAbs(int[] a) {
int sum = 0;
for (int i = @; 1 < 50; i++)
sum += abs(a[i]);
if (sum < Q)
assert false;
return sum;



Solution: Compositional Symb. Execution

» Key idea: compute function summaries to be
used at all call sites of the function

Function summary encodes path conditions and
return values of all paths through the function

Potential solution to path explosion problem
Only as good as computed function summaries

» Algorithm
Symbolically execute all paths of callee function
and compute a function summary

When symbolically executing paths in the caller
function, reuse the summary of the callee instead
of repeatedly executing paths in the callee



Path Explosion Problem Il

int abs(int x) { Summary of abs:
if (x >= @) return x; This is a stupid summary
else return -x; (causes branching in Z3
} when unsat).
forall x. (x>0 A abs(x)=x) Vv
int sumAbs(int[] a) { (x < 0 A abs(x)=-x)
int sum = ©; This is a better summary:

for (int i = @; 1 < 50; i++) 50| x (abs(x)>=0)
sum += abs(a[i]);

if (sum < Q)
assert false;

Path condition leading to error:
abs(a[0]) + abs(a[1]) +...+
. abs(a[49]) <0 A

return sum; (forall x. (x>0 A abs(x)=x) V/
} (X < 0 A abs(x)=-x))



Further Reading

» J.C. King: Symbolic Execution and Program
Testing, CACM 1976

» D. Babic, A.J. Hu: Structural Abstraction of
Software Verification Conditions, CAV 2007

» C. Pasareanu, W. Visser: A Survey of New
Trends in Symbolic Execution for Software
Testing and Analysis, STTT 2009

» N. Sinha, N. Singhania, S. Chandra, M.
Sridharan: Alternate and Learn: Finding
Witnesses without Looking All over, CAV 2012



Next Time

» Concolic (concrete+symbolic) execution



