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1. Introduction 

The large-scale production of  reliable programs is 
one of the fundamental requirements for applying com- 
puters to today's challenging problems. Several tech- 
niques are used in practice; others are the focus of  cur- 
rent research. The work reported in this paper is directed 
at assuring that a program meets its requirements even 
when formal specifications are not given. The current 
technology in this area is basically a testing technology. 
That  is, some small sample of the data that a program is 
expected to handle is presented to the program. If  the 
program is judged to produce correct results for the 
sample, it is assumed to be correct. Much current work 
[11] focuses on the question of  how to choose this 
sample. 

Recent work on proving the correctness of programs 
by formal analysis 15] shows great promise and appears 
to be the ultimate technique for producing reliable pro- 
grams. However, the practical accomplishments in this 
area fall short of  a tool for routine use. Fundamental  
problems in reducing the theory to practice are not 
likely to be solved in the immediate future. 

Program testing and program proving can be con- 
sidered as extreme alternatives. While testing, a pro- 
grammer can be assured that sample test runs work cor- 
rectly by carefully checking the results. The correct exe- 
cution for inputs not in the sample is still in doubt. Al- 
ternatively, in program proving the programmer form- 
ally proves that the program meets its specification for 
all executions without being required to execute the 
program at all. To do this he gives a precise specifica- 
tion of the correct program behavior and then follows a 
formal proof  procedure to show that the program and 
the specification are consistent. The confidence in this 
method hinges on the care and accuracy employed in 
both the creation of the specification and in the con- 
struction of  the proof  steps, as well as on the attention 
to machine-dependent issues such as overflow, rounding 
etc. 

This paper describes a practical approach between 
these two extremes. F rom one simple view, it is an en- 
hanced testing technique. Instead of executing a program 
on a set of sample inputs, a program is "symbolically" 
executed for a set of  classes of inputs. That  is, each sym- 
bolic execution result may be equivalent to a large num- 
ber of normal test cases. These results can be checked 
against the programmer's  expectations for correctness 
either formally or informally. 

The class of  inputs characterized by each symbolic 
execution is determined by the dependence of  the pro- 
gram's control flow on its inputs. If  the control flow of  
the program is completely independent of  the input var- 
iables, a single symbolic execution will suffice to check 
all possible executions of the program. If  the control 
flow of the program is dependent on the inputs, one 
must resort to a case analysis. Often the set of input 
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classes needed to exhaust all possible cases is practicaUy 
infinite, so this is still basically a testing methodology. 
However, the input classes are determined only by those 
inputs involved in the control flow, and symbolic test- 
ing promises to provide better results more easily than 
normal testing for most programs. 

2. S y m b o l i c  E xecut ion  

The symbolic execution of a program is described in 
this section in an ideal sense, and then, in Section 6, a 
particular practical system which has been built (an ap- 
proximation to the ideal) is discussed. The term ideal is 
used for several reasons: 

1. The assumption is made that programs deal only 
with integers and, in fact, only with integers having 
arbitrary magnitude. Machine register overflows are 
not considered. 

2. The "execution tree" (defined later) resulting from 
symbolic execution of many (most) programs is 
infinite. 

3. The symbolic execution of IF statements requires 
theorem proving which, even for modest program- 
ming languages, is mechanically impossible. 

Nonetheless, the discussion of the ideal does provide a 
standard against which real computer systems for sym- 
bolic execution can be measured. 

Each programming language has an execution se- 
mantics describing the data objects which program vari- 
ables may represent, how statements written in the 
language manipulate data objects, and how control 
flows through the statements of a program. One canalso 
define an alternative "symbolic execution" semantics 
for a programming language where the real data ob- 
jects need not be used but can be represented by arbi- 
trary symbols. Symbolic execution is a natural extension 
of normal execution, providing the normal computa- 
tions as a special case. Computational definitions for the 
basic operators of the language are extended to accept 
symbolic inputs and produce symbolic formulas as 
output. 

Let us consider a simple programming language. Let 
the program variables be exclusively of type "signed 
integer". Include simple assignment statements, IF state- 
ments (with THEN and ELSE clauses), GO-TO's to 
labels, and some means for obtaining inputs (e.g. pro- 
cedure parameters, global variables, read operations). 
Restrict the arithmetic expressions to the basic integer 
operators of addition (+) ,  subtraction ( - ) ,  and multi- 
plication (X). Restrict the Boolean expressions (used in 
IF statements) to the simple test of whether an arithmetic 
expression is non-negative (i.e. { arith.expr.} >_ 0). 

The symbolic execution of programs in this simple 
language is now described taking the normal execution 
sementics for granted. The execution semantics is 
changed for symbolic execution, but neither the lan-  
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guage syntax nor the individual programs written in the 
language are changed. The only opportunity to intro- 
duce symbolic data objects (symbols representing inte- 
gers) is as inputs to the program. For simplicity, let us 
suppose that each time a new input value for the pro- 
gram is required, it is supplied symbolically from the list 
of symbols {al, ~2, ~3, • • • }. Program inputs are 
eventually assigned as values to program variables 
(e.g. by procedure parameters, global variables, or read 
statements). Thus, to handle symbolic inputs, we allow 
the values of variables to be a~'s as well as signed integer 
constants. 

The evaluation rules for arithmetic expressions used 
in assignment and IF statements must be extended to 
handle symbolic values. The expressions formed in the 
usual way by the integers, a set of indeterminate sym- 
bols {~1, a s , . . .  }, parentheses, and the operations -b, 
--, and X are the integer polynomials (integer valued, 
integer coefficients) over those symbols. By allowing 
program variables to assume integer polynomials over 
the a~'s as values, the symbolic execution of assignment 
statements follows naturally. The expression on the 
right-hand side of the statement is evaluated, possibly 
substituting polynomial expressions for variables. The 
result is a polynomial (an integer is the trivial case) which 
is then assigned as the new value of the variable on the 
left-hand side of the assignment statement. 

The GO-TO's to labels function exactly as in normal 
executions by unconditionally transferring control 
from the GO-TO statement to the statement associated 
with the corresponding label. 

The "state" of a program execution usually includes 
the values of program variables and a statement counter 
(dhnoting the statement currently being executed). The 
definition of the symbolic execution of the IF statement 
requires that a "path col~dition" (pc) also be included 
in the execution state, pc is a Boolean expression over 
the symbolic inpuls ia~}. It never contains program 
variables, and for our simple language, is a conjoined 
list of expressions of the form R _> 0 or --1 (R >_ 0), 
where R is a polynomial over {a~}. For example: 

1,~1 >__ o A ", + 2 x ~, >_ 0 A -, (,~3 > o) 1. 

As will be seen, pc is the accumulator of properties 
which the inputs must satisfy in order for an execution to 
follow the particular associated path. Each symbolic 
execution begins with pc initialized to true. As as- 
sumptions about the inputs are made, in order to choose 
between alternative paths through the program as pre- 
sented by IF statements, those assumptions are added 
(conjoined) to pc. 

The symbolic execution of an IF statement begins in 
a fashion similar to its normal execution: the evaluation 
of the associated Boolean expression by replacing vari- 
ables by their values. Since the values of variables are 
polynomials over {ad, the condition is an expression 
of the form: R >_ 0, where R is a polynomial. Call such 
an expression q. Using the current path condition (pc) 
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form the two following expressions: 

(a) pc D q 
(b).pc D ~q. 

At most one of these expressions can be true (eliminat- 
ing the trivial case where pc is identically false). When 
exactly one expression is true, we continue the execution 
of the IF statement as usual by passing control either to 
the THEN part, when expression (a) is true, or to the 
ELSE part, when expression (b) is true. All normal exe- 
cutions, whose input values satisfy pc, would follow the 
same alternative as this symbolic execution; all would 
take the THEN alternative (pc ~ q) or all would take 
the ELSE alternative (pc ~ --1 q). In this case, the execu- 
tion of the IF  statement is called a "nonforking" 
execution. 

The more interesting case occurs when neither ex- 
pression (a) nor expression (b) is true. In this situation 
there exists at least one set of inputs to the program 
which satisfy pc and would take the THEN alternative 
and there exists at least one other set of inputs which 
satisfy pc and would lead to the ELSE alternative. Since 
each alternative is possible in this case, the only com- 
plete approach is to explore both control paths. So the 
symbolic execution is defined to fork into two "parallel" 
executions: one following the THEN alternative, the 
other, the ELSE. Both of these executions assume the 
computation state which existed immediately before 
execution of the IF statement but proceed independ- 
ently thereafter. In this case the execution of the IF state- 
ment is called a "forking" execution. Note that the 
forking/nonforking characteristic is associated with a 
particular execution of an IF statement and not with the 
statement itself. One execution of a particular IF state- 
ment may be forking, while a subsequent execution of 
the same statement may be nonforking. 

Since, in choosing the THEN alternative, the inputs 
are assumed to satisfy q (the evaluated IF statement 
Boolean), this information is recorded in pc by doing 
the assignment pc  ~-- pc  A q. Similarly choosing the 
ELSE alternative leads to pc ~-- pc A -~ q. pc  is called 
the "path condition" because it is the accumulation of 
conditions which determines a unique control flow path 
through the program. Each forking execution of an IF 
statement contributes a condition over the input sym- 
bols which is determined by the particular choice of 
path. pc remains unchanged for nonforking executions 
of IF statements, since no new assumptions are made 
or needed, pc can never become false since its initial 
value is true and the only operation performed on pc is 

Fig. 1. Procedure SUM. 

1 SUM: PROCEDURE (A,B,C); 
2 X ~--- A + B; 
3 Y~--B + C; 
4 Z~---X + Y-- B; 
5 RETURN (Z); 
6 END; 

an assignment of the form: 

pc ~-- pc  A r (where r is either q or --1 q). 

but only in the case when (pc A r) is satisfiable (pc A r 
~ ( p c  ~ ~ r ) ,  which is satisfiable if and only if (pc D 
~r )  is not a theorem). 

3. Examples 

Consider the simple program shown in Figure 1. It 
is written in a PL/I-style syntax and computes the sum of 
three values. With integer inputs of 1, 3, and 5 the con- 
ventional execution of this program, as shown in Figure 
2, computes the output 9. The symbolic execution shown 
in detail in Figure 3 has established that for any three 
integers, say a~, a2, ~3, the program will calculate 
their sum, al A- ~2 q- a~. 

Now consider the somewhat more complicated ex- 
ample shown in Figure 4 for raising an integer X to the 
power Y. With the symbols ax and or2 supplied as input 
for X and Y the symbolic execution would proceed as 
shown in Figure 5. 

4. Symbolic Execution Tree 

One can generate an "execution tree" characterizing 
the execution paths followed during the symbolic 
execution of a procedure. Associate a node with each 
statement executed (labeled with the statement number) 
and with each transition between statements a directed 
arc connecting the associated nodes. For each forking 
IF  statement execution, the associated node has two 
arcs leaving the node which are labeled "T"  and " F "  
for the true (THEN) and false (ELSE) parts, respec- 
tively. Also associate the complete current execution 
state, i.e. variable values, statement counter, and pc 
with each node. The execution tree for POWER (a~ ,or2) 
(Figures 4 and 5) is given in Figure 6. 

The trees formed in this way from a symbolic execu- 
tion have the following interesting properties. 

1. For each terminal leaf in the tree (corresponding 
to a completed execution path) there does exist a par- 
ticular nonsymbolic input to the program which, when 
executed in the normal fashion, will trace the same path 
(list of statements executed). This is equivalent to saying 
that pc never becomes identically false. A brief argu- 
ment establishing that was made at the end of Section 2. 

2. pc 's  associated with any two terminal leaves are 
distinct (i.e. --1 (pc1 A pc.,)). The two paths from the 
common root of the execution tree leading to any two 
terminal leaves have a unique forking node where the 
two paths diverge. At that forking node some q was 
added to one pc while --1 q was added to the other. Since 
neither pc becomes inconsistent (false) they must main- 
tain this difference. 

The significance of these comments is emphasized in 
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Fig. 2. Execution of SUM(l, 3, 5). A dash represents unchanged 
values, i.e. the same values as those given in the line above; the ques- 
tion mark represents undefined (uninitialized) values. 

After X Y Z A B C 
s ta tement  Values would be 

1 ? ? ? 1 3 5 
2 4 . . . . .  
3 -- 8 . . . .  
4 -- --  9 -- -- -- 
5 (Returns 9) 

Fig. 3. Symbolic execution of SUM (al, a~, a3). Path condition is 
abbreviated pc.  

node whose p c  becomes t rue .  This eommutativity can be 
diagrammed as shown in Figure 9, where P represents 
the program, E(P(X)) is the result of executing 
program P on inputs X, and K is a set of specific integer 
inputs. 

Of course, this commutativity relationship is why 
symbolic execution is of interest. The symbolic execu- 
tions capture exactly the same effects as conventional 
executions. Symbolic execution is not merely an arbi- 
trary alternative execution definition but a natural exten- 
sion of the conventional definition. As in the rela- 
tionship between arithmetic and algebra the specific 
(arithmetic) computations dictated by the program 
operators are generalized and "delayed" using the ap- 
propriate algebraic formulas. 

After X Y Z A B C pc  
statement Values would be 

1 ? ? ? ~1 ~2 ~8 true 
2 ~ t + ~ 2  - -  - -  
3 - -  a2+~3  - -  
4 - -  - -  a l + a 2 + a 8  

5 (Returns atq-~2-t-~8) 

the example of Figure 7. Note: DO statements are intro- 
duced for simplicity. They can be expanded easily into 
IF /GO T O  loops to conform with the preceding nota- 
tion. The execution tree for TWOLOOPS (of Figure 7) 
is shown in Figure 8. Even though statement 4 of the 
second loop has the same syntactic branching potential 
as statement 2 of the first loop, the assumptions made 
while forking at statement 2 are preserved (in p c )  and 
are used in statement 4, which then avoids generation 
of a fork. These symbolic execution trees are similar to 
the execution trees defined by Paterson for program 
schemata in [13]. Paterson's trees are also discussed in 
[12]. 

5 .  C o m m u t a t i v i t y  

The symbolic execution defined above for this simple 
integer language satisfies an interesting commutative 
property. The operation of instantiating the symbols 
{a~} with specific integers, say {j~}, and the operation of 
executing the program are interchangeable. That is, if 
one conventionally executes a program with a specific 
set of integers {j~} as inputs (instantiation of a~'s by 
j~'s first, followed by execution), the results will be the 
same as executing the program symbolically and then 
instantiating the symbolic results (assigning j ' s  to a's). 
The meaning of "instantiating the symbolic results" is 
first, for each terminal leaf in the execution tree, sub- 
stitute j ' s  for a 's in all program variable values and in 
p c .  Then the "results" are the values for the terminal 

6 .  A n  I n t e r a c t i v e  S y m b o l i c  E x e c u t o r - - E F F I G Y  

The author and his colleagues have been developing 
an interactive symbolic execution system called EFFIGY. 
Work began on this system in early 1973 and is stiU in 
progress. The system offers a spectrum of services to the 
user. Basic debugging and testing facilities are provided 
for symbolic program execution with normal program 
execution provided as a special case. An "exhaustive" 
test manager is available for systematically exploring 
the alternatives presented in the symbolic execution tree. 
The system can automatically check test case results 
against output assertions if they are supplied. Finally, 
the system offers a program verifier which uses symbolic 
execution and user supplied assertions to generate the 
verification conditions, generally following the ideas of 
Deutsch [4]. This paper focuses on symbolic execution 
as an independent concept and on its use for program 
testing. 

The language for which symbolic execution is possi- 
ble in EFFIGY, has been enhanced with each new version 
of the system and now is written in a PL/X style syntax 
and includes: 
1. External procedures with PL/I parameter passing 

conventions. 
2. Integer valued variables (only) (FIXED BINARY 

(31, 0)) and single dimensional arrays of integer 
values. These variables may be declared as STATIC 
or AUTOMATIC and may have INITIAL attri- 
butes. 

3. Assignment statements, IF  statements (with THEN 
and ELSE clauses), compound statements using 
D O . . .  END, and GO-TO statements. 

4. Iterative DO and DO WHILE statements. 
5. Elementary READ and WRITE statements. 

6. The arithmetic, relational, and logical operators are 
exclusively: q-, - , . , / ,  **, ABS, MOD (remainder); 
> ,  < ,  > ,  < ,  = ,  ~ ;  & (and), I (or), -a (not), D 
(implies). 

A full complement of interactive debugging facilities 
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is also available, including: 
1. Tracing. The user can request to see the statement 

number, the source statement, the computational 
results, or any combination of  these for any or all 
statements within procedures as they are executed. 

2. Breakpoints. The user can insert "breakpoints"  be- 
fore or after any statement Or between any statement 
pair. At these points execution is interrupted and 
control passes to the user's terminal. The user can 
then examine the state of  the execution, set vari- 
ables, and resume execution. 

3. State saving. As a user explores the various paths 
of  his program he may wish to save the state of exe- 
cution to later return and explore alternative paths. 
"SAVE" and " R E S T O R E "  are provided for this 
purpose. 
Special features and commands basic to symbolic 

execution are also included in the system. The user may 
define arbitrary identifiers to be symbolic program in- 
puts (the a 's from before) by enclosing them in double 
quotes ( ' )  and using them in place of specific integer 
constants. For  example, the user could invoke a pro- 
cedure SUM (from Figure 1) for testing by: 

CALL SUM (1, 3, 5); 

CALL SUM ("A", "B", "C"); 

CALL SUM ("A", 3, 5); 

Normal execution over inte- 
gers. 

Symbolic execution using the 
symbols A, B, and C. 

A combination. 

The definition of symbolic execution given earlier 
dictates that for forking (unresolvable) IF statement 
executions the execution proceeds in parallel on both 
alternate paths (the T H E N  alternative and the ELSE al- 
ternative) thus generating a complete execution tree. 
For  most programs this is an infinite process. The 
simplest, and perhaps most general, solution to this 
problem is to let the user interactively choose the single 
alternative path to be taken at any one time. This basic 
facility is provided in EFFIGY.  By use of the SAVE 
and RESTORE commands, mentioned earlier, the user 
can save the state of  the execution and return later to 
explore alternate paths. This allows the user to "walk"  
the execution tree starting at the root  in any way he 
chooses. 

Whenever the system encounters a forking execution 
of  an IF statement (both alternatives being possible) it 
notifies the user and allows him to choose. He may: 

Fig. 4. Procedure POWER. 

1 POWER: PROCEDURE(X, Y); 
2 Z ~--- 1; 
3 J ~--- 1; 
4 LAB: IF Y >_ J THEN 
5 DO; Z*-- Z * X; 
6 J *- J -'1- 1; 
7 GO TO LAB; END; 
8 RETURN (Z) ; 
9 END; 

1. Type "go t rue" and the system follows the T H E N  al- 
ternative changing pc accordingly, 

2. Type "go false" and the system follows the ELSE al- 
ternative changing pc accordingly, or 

3. Type "assume (P); go". 
In the third form P is a predicate which is first evaluated 
using the current values of program variables and then 
added (conjoined) to the path condition (pc). The 
"go"  in this case directs the system to re-execute the IF 
statement using the modified pc. 

For example, suppose the program variable X has 
the value a, pc has the value a > 0, and the IF statement 
being executed has the form: 

IF X > 5 THEN $1 ELSE S~; 

When evaluated X > 5 becomes a > 5. Using pc the 
choice of path is unresolvable by the system since neither: 

(a) a > 0 D  ( a > 5 )  nor 
(b) a > 0 D - - l ( a > 5 ) .  

The system invites the user to choose. I f  he types "go 
true" pc is updated to a > 5 (formed from a > 0 & 
a > 5) and statement $1 is executed next. If  he types 
"go false" pc is updated to a > 0 & -1 (a > 5) and state- 
ment $2 is executed next. If  he types "assume ("a"  > 
10); go" pc becomes a > 10 (a > 0 & a > 10) and the 
IF statement is re-executed. This time 

a > 1 0 ~ a > 5  

is true and the execution proceeds to statement St .  The 
user could have gotten the same result by typing "as- 
sume (X > 10); go" since X > 10 gets evaluated to a 
> 10 at the first step. 

When the system asks for the user's choice at a fork- 
ing IF statement execution, it is, in fact, in the same 
state as if the user had stopped the execution with a 
breakpoint before the IF statement. As such, before the 
user types "go true", "go false", or "go",  he may exam- 
ine program variables, set breakpoints, adjust the trace 
settings, etc. Even though the definition of the ASSUME 
statement is most easily motivated by the use described 
above, its execution is independent of the IF statement. 
As such, ASSUME statements can be entered at any 
breakpoint as well as included in procedures and will 
have the following effects: 

1. Evaluate the ASSUME's  Boolean expression. 
2. Conjoin the result to the current pc (if consistent). 

An ASSUME statement could be used at the beginning 
of a procedure, for example, to keep the system from 
considering inputs on which it was not designed to 
operate. 

The discussion in Section 2 was restricted to integer 
polynomials for pedagogical simplicity. Canonical 
forms for polynomials are well known, and so is the fact 
that the set of polynomials is closed under addition and 
multiplication. The generalization from arithmetic to 
algebra is well understood in this case. The  EFFIGY sys- 
tem is implemented to deal with the more general class 
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of  expressions described above. Of  course, one would 
like to have an EFFIGY system which operates on a com- 
mon  programming language like PL/I. That  imposes an 
extremely ambitious burden on the formula manipula- 
tion and simplification component  of  the system. That  
component  of  the EFFIGY system was, in fact, borrowed 
from a program verifier previously built by the author 
[8]. The capabilities and limitations of  EFFIGY'S formula 
manipulat ion are inherited directly f rom that earlier 
system which is discussed in detail in [9]. 

7. A Further  E x a m p l e  

A brief description of the basic EFFIGY system is also 
given in [10]. That  paper  contains a script f rom an actual 
EFFIGY session as an Appendix which may be of  interest 
to some readers. An explanation of how the program of 
Figure 10, SEARCH,  could be checked out on EFFIGY 
follows. These steps can be, and were, actually performed 
on the EFFIGY system. 

The program S E A R C H  was written to perform a 
binary search for an argument  X in an array A of ele- 
ments stored in ascending order. The search is confined 

Fig. 5. Symbolic execution of POWER (al, a~). 

After J X Y Z p c  

statement Values would be 

1 ? 61 63 ? t r u e  

2 ~ - -  - -  1 - -  

3 1 . . . .  

4 execution in detail: 
(a) evaluate Y>J  getting 62>_ l. 
(b) use path condition and check: 

(i) t r u e  ~ a2 >_ 1 

(ii) t r u e  ~ --1 (62 > 1 

(c) neither are theorems, so fork. 
Case -~ (62 _> 1) : 

4 1 al a~ 1 --a (62>~ 1) 
8 this case completed. (returns 1 when 6z<l.) 

Case 62~ 1 : 
4 1 61 62 1 63>_ 1 
5 - -  - -  - -  6 1  - -  

6 2 . . . .  
7 . . . . .  

4 execution in detail: 
(a) evaluate Y~J, getting a2_>2 
(b) use p c :  

(i) 63>1 ~ az>_2 
(ii) 62>1 ~ --n(6~>_2) 

(c) neither t r u e ,  so fork. 
Case --1 (62>2) : 

4 2 al 6z 6x 6s>l A "-~ (62>2) 
(or simply 63=1) 

8 this case completed. (returns al when a3= i.) 

Case 63>2:  
4 2 6t as 61 az~l A 63>__2 
: : (or simply 62>_2) 

In this example the symbolic execution will continue indefinitely. 

to the array elements with subscripts f rom L up to and 
including U. I f  a match is found, the subscript value of 
the array element matching X is returned in J and 
F O U N D  is set to 1. Otherwise, F O U N D  is set to 0 and 
J is set to the value such that A(J) < X < A(J-4-1). The 
symbolic execution tree for this p rogram is infinite since 
the initial value of ( U - - L )  may be arbitrarily large. 

The first test of  S E A R C H  might take the form: 

CALL SEARCH (A, 1, 5, "X", FOUND, J). 

Assume the elements of  the array A, A(1), A ( 2 ) , . . . ,  
A(5), have been set to symbolic values "A(1)" ,  "A(2)" ,  
• . . ,  "A(5)" ,  respectively. The constants 1, 5, and " X "  
are input arguments and F O U N D  and J are integer 
variables which will return the results f rom SEARCH.  
Symbolic execution will proceed until statement number  
7, at which point  the user is asked whether or not " X "  = 
"A(3)" .  I f  in response to the system's query the user 
types "save; go true",  the current execution state will be 
saved as state 1 and the execution will run to comple- 
tion determining that p c  = ( "X"  = "A(3)") ,  F O U N D  = 
1, and J = 3. Now by typing "restore 1; go false" the 
user may examine the other possibility when " X "  # 
"A(3)" .  Continuing in this manner  the user may  ex- 
plore the finite subtree determined by inputs 1 and 5, 
and in this case find eleven terminal leaves: 

p c  FOUND J 

X=A (3) I 3 
X=A (I) & X<A (3) 1 1 
X<A (I) & X<A (3) 0 0 
X=A (2) & X>A (I) & X<A (3) 1 2 
X>A (1) & X<A (2) & X<A (3) 0 1 
X>A (1) & X>A (2) & X<A (3) 0 2 
X=A (4) & X>A (3) 1 4 
X>A (3) & X<A (4) 0 3 
X=A (5) & X>A (3) & X>A (4) I 5 
X>A (3) & X>A (4) & X<A (5) 0 4 
X>A (3) & X>A (4) & X>A (5) 0 5 

The user could also cause the system to generate 
these eleven outputs automatically by use of  the TEST 
facility in EFFIGY: 

TEST (200) SEARCH (A, 1, 5, "A", FOUND, J) 

The 200 is used to limit the exhaustive search of  the 
symbolic execution tree to those paths traversing less 
than 200 statement executions• In this case the limit is 
unneeded since the tree is finite and small. This test 
provides some evidence that  the program will success- 
fully find any element of  the array. 

One may  next try: 

CALL SEARCH (A, "N", "N" + 4, "X", FOUND, J) 

which is a generalization of the previous test. As before, 
this execution, if pursued exhaustively, will produce 
eleven terminal cases matching the previous ones where 
I will be replaced by " N " ,  2 will be replaced by " N "  + 
I, etc. E.g., the second case listed above would become: 

X=A(N) & X<A (N+2) 1 N 
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Fig. 6. Execution tree for POWER(a1, a~). 

) 

Casepc is (a2 < 1): 
RETURNS 1 

Casepc is (a~ = 1): 
'~ RETURNS al 

the argument X. The properties of these values which 
are important in the program (e.g. " X "  <_ "A(N)")  are 
uncovered during the symbolic execution. All of the 
testing is done from the original program alone---no 
correctness predicates are required. As discussed fur- 
ther in Section 8, input, output, inductive, and check- 
ing predicates can be used in conjunction with symbolic 
execution of programs quite effectively for testing and 
correctness proofs, but they are not required for sym- 
bolic testing. As with normal execution, when testing a 
program using symbolic execution, one must use care 
in choosing "interesting" test cases and in deciding 
when enough is enough. 

8. Program Correctness, Proofs, and Symbolic Execution 

{RETURNS ax ~ when pc is (az = n)} 

This test gives us the additional assurance that no special 
properties of the numbers 1, 2, . . . ,  5 (such as being 
powers of 2) affected our previous results. 

Another similar but more specialized test is: 

CALL SEARCH (A, "N", "N", "X", FOUND, J) 

which, when exhaustively explored, creates a three leaf 
tree: 

pc FOUND J 

X=A (N) 1 N 
X<A (N) 0 N--1 
X>A (N) 0 N 

The two calls: 

CALL SEARCH (A, 1, "N", "X", FOUND, J) and 
CALL SEARCH (A, "U', "U", "X", FOUND, J) 

are the most general tests and can be used to check that 
"bounds averaging" and the "shrinking" of the bounds 
range proceed properly. Even though both calls lead to 
infinite symbolic execution trees, interesting results 
like the following (derived from the first call) are 
possible: 

pc FOUND J 

X=A((N+I)/2) & N>0 1 
X=A(((N+I)/2)/2) & N>0 & 1 
X<A((N+I)/2) & 
(N+1)/2>1 

X>A((N+I)/2) & N>0 & 1 
X= A (((N+ 1)/2+N-F1)/2) & 
(N+I)/2<N 

(N+l)/2 
((N+1)/2)/2 

((N+l)/2+N+1)/2 

Note that while performing all of these tests one 
never supplies nonsymbolic values to the array A or to 

To prove the correctness of a program using a 
method presented by Floyd [6], the programmer sup- 
plies an "input predicate" and an "output  predicate" 
with the program. The predicates define the "correct" 
behavior of the program, the program being correct if 
for all inputs which satisfy the input predicate the re- 
suits produced by the program, if any, satisfy the output 
predicate. Floyd presents a method for checking the 
consistency of the program and its I /o  predicates, and 
thus for proving its correctness. 

One of the steps in Floyd's proof method, the genera- 
tion of verification conditions, can be done quite simply 
by executing program paths symbolically. Deutsch in- 
dependently developed the notion of symbolic execu- 
tion in exploiting this proof technique in his interactive 
program verifier [4]. 

Perhaps the simplest way to explain this technique 
is using the three ancillary language statements: AS- 
SUME, PROVE, and ASSERT used to associate predi- 
cates with the program. All three of these statements 
have a Boolean formula supplied as part of the state- 
ment in parentheses after the statement name, e.g. 
ASSERT(X>0).  The free variables of these formulas 
are assumed to be program variables. ASSUME(B) was 
defined previously in Section 6. When executed, B is 
evaluated using the current values of program variables, 
and the resulting value is conjoined to the path condi- 
tion (i.e. pc ~ p c / ~  value (B)). 

The PROVE(B) statement is executed by forming the 
expression: 

pc ~ value(B) 

and attempting to establish that it is a theorem and dis- 
playing true or false accordingly. In the way PROVE is 
used below, these expressions, in fact, will be the Floyd 
verification conditions. The ASSERT statement will be 
used later as either an ASSUME or a PROVE state- 
ment depending on the context. 

Besides the initial and final predicates which serve 
to define the program's correctness, Floyd's method 
requires associating additional "inductive predicates" 
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with various points in the program. This is usually done 
such that at least one predicate is within every loop in 
the program, but it can be done in any way so long as 
the control flow paths, given by the program segments 
between predicates, are of  finite length. The inductive 
predicates allow a general inductive argument to be 
made (see [6] or [7]) which reduces the proof  of  cor- 
rectness of the program to the proof  of correctness of a 
finite set of finite length paths. 

Assume that input, output, and inductive predicates 
are associated with a program by placing ASSERT 
statements into the program at the appropriate points 
(the initial predicate is an ASSERT statement placed 
as the first statement in the program, etc.) We now have 
a fixed set of paths through the program, each of  which 
begins with an ASSERT statement and ends with an 
ASSERT statement and each must be proved correct. 
That  is, one must show, using any set of variable values 
which satisfy the predicate at the beginning of the path, 
that the values resulting from execution along the path 
must satisfy the predicate at the end. 

One can prove the correctness of  each path by exe- 
cuting it symbolically as follows: 

1. Change the ASSERT at the beginning of the path to 
an ASSUME; change the ASSERT at the end of the 
path to a PROVE. 

2. Initialize the path condition to true and all the pro- 
gram variables to distinct symbols say, a l ,  or2, . . . .  

3. Execute the path symbolically. Whenever an unre- 
solved IF statement execution is encountered, do 
a "go t rue" or "go false", whichever will make the 
execution follow the designated path. 

4. If  the PROVE at the end of the path displays true, 
the path is correct, otherwise it is not. 

Provided that the symbolic execution satisfies the 
commutative property discussed in Section 5, it is 
straightforward to see that this is a valid proof  method. 
The program proof  is carried out in terms of  the values 
of program variables at the beginning of  the path, to 
which we give symbolic names. The path condition ac- 
cumulates assumptions made about those initial values. 
Execution of  the first ASSUME records, in the path con- 
dition, the required assumptions about those initial 
values. ("One must show, using any set of  variable val- 
ues which satisfy the predicate at the beginning of the 
path that the values resulting from execution along the 
path must satisfy the predicate at the end.") The formu- 
las computed as a result of assignment statements 
record the updated program variables' values as a func- 
tion of  the values at the start of the path. The action at 
unresolved IF statement executions records in the path 
condition the additional assumptions, again over the 
path's initial values, required for any execution to 
follow this particular path. 

Finally the execution of the PROVE at the end of  
the path sets up a theorem candidate (verification con- 
dition) which expresses the question: assuming the be- 

Fig. 7. Procedure TWOLOOPS. 

1 TWOLOOPS: PROCEDURE (N); 
2 DO J=l  TO N; 
3 (body of statements) END; 
4 DO K=I  TO N; 
5 (body of statements) END; 
6 END; 

Fig. 8. Execution tree for procedure TWOLOOPS. 

al<0 

: Q  I Q  al~ 1 

a1=2 

Fig. 9. Commutativity diagram. 

Symbolic Execution 

(P(X),K) •" 

Set parameters to 
integer values 

P(g) 

Conventional Execution 

~.(E(P(X)).K) 

Substitute into result 
of symbolic execution 

~ , E ( P ( K ) )  

Fig. 10. Procedure SEARCH. 

1 SEARCH : 
PROC(A, L, U, X, FOUND, J); 

2 DCL A(*) INTEGER; 
3 DCL (L, U, X, FOUND, J) INTEGER; 
4 FOUND = 0; 
5 DO WHILE (L~>U & FOUND=0); 
6 J = (L+U)/2; 
7 IFX = A(J) THEN FOUND = 1 
8 ELSE IF X < A(J) 
9 T H E N  U = J--1 

10 ELSE L = J+l ;  
11 END; 
12 IF FOUND = 0 THEN J = L--l;  

13 END; 

392 Communications July 1976 
of Volume 19 
the  ACM Number 7 



ginning predicate was satisfied and we followed this 
path (recorded in pc), do the current (path end) values 
of the program variables "satisfy the predicate at the 
end?" 

Given a symbolic execution system such as EFFIGY, 
it is conceptually straightforward to also have it attempt 
correctness proofs by the addition of a PROVE state- 
ment and managerial controller to enumerate paths and 
force path choices at unresolved IF statement executions. 
We have done this and are using it as a tool for p/arsuing 
research into correctness proof  techniques. 

In fact the notions of correctness proof  and sym- 
bolic execution are closely linked in concept as well as in 
tools required to perform them. Suppose one has asso- 
ciated Floyd input /output  predicates with a program by 
placing the input predicate as an ASSUME state- 
ment at the beginning of the program and the 
output predicate as a PROVE statement at the 
end. With the definition of  the ASSUME state- 
ment given here the initial ASSUME restricts the 
subsequent analysis, be it symbolic execution or a cor- 
rectness proof, to only those values satisfying the initial 
predicate. Adopting the definition for PROVE state- 
ments necessary for correctness proofs is also a very 
useful one for program testing by symbolic execution. 
In program testing, symbolic or not, one must examine 
the output produced and judge its correctness. If  one 
can formalize the correctness criteria in terms of an 
output predicate and place that at the end of the pro- 
gram in a PROVE statement, the symbolic executor will 
then also perform the proper checking of test results. 

One other comment relates to the definition of  the 
PROVE statement. Several languages do provide sup- 
port  for the normal run-time checking of predicates 
placed in the program with, say, ASSERT statements 
(e.g. Algol W[14]). Such statements are easily imple- 
mented by considering 

ASSERT (B) 

as shorthand for 

IF --aB THEN (some error alert such as SIGNAL ERROR). 

Since this is a normal IF statement, one can consider its 
symbolic execution. If  the program is correct the execu- 
tions of the IF  statement should always be resolvable 
to the false path. By the definition for symbolic execu- 
tion of the IF  statement, that happens only if 

pc :D value(B). 

Note that this is exactly what PROVE attempts to prove ! 
For  any program whose symbolic execution tree is 

finite and for which the correctness criteria has been 
made explicit with input /output  predicates, the ex- 
haustive symbolic execution and the proof  of correct- 
ness done as above are exactly the same process. Since 
no inductive predicates are necessary, the set of  paths 
requiring proof  are those from the input predicate to the 

393 

output predicate which are the paths described by the 
finite execution tree. 

For  programs with infinite execution trees, the sym- 
bolic testing cannot be exhaustive and no absolute 
proof  of correctness can be established. An obvious 
way to enhance symbolic execution to provide a cor- 
rectness proof  in all cases is to consider some form of  in- 
duction over the infinite parts of the execution tree. This 
is in fact, exactly what Floyd's proof  of correctness 
method does. The inductive predicates placed within the 
loops provide the inductive aid necessary for symbolic 
execution to "execute" over the infinite branches of  the 
execution tree. Another similar yet different approach 
has recently been taken by Topor  and Burstall [15] to 
provide the inductive assistance needed to "execute" 
over the infinite branches of the tree and provide a cor- 
rectness proof. 

There is one notable difference, however, in the 
capability required of the predicate manipulation fa- 
cility for correctness proofs, from that required for 
symbolic testing. If  one is strictly confined to symbolic 
execution without the use of  any user introduced pre- 
dicates, pc and the expressions requiring proof  are syn- 
tactically and semantically determined by the program- 
ming language. However, the predicate semantics in 
correctness proofs derive from the problem area of the 
program and not the programming language. 

It is this difference that convinces us that symbolic 
execution for testing programs is a more exploitable 
technique in the short term than the more general one of  
program verification. 

9. Practical Issues 

Many of the troublesome issues arising in program 
proving systems also occur in symbolic execution. For  
example, a problem common to both areas is finding a 
practical way to deal with variable storage-referencing. 
For  example, the array notation A(I) references a 
different particular element of the array A depending on 
the value of I. When the value of I is a symbolic ex- 
pression, the particular element being referenced is a 
function of the initial program inputs. In many cases, 
even when all the information known about  those in- 
puts, as held in pc, is examined, the particular reference 
may be inherently ambiguous. 

At least two approaches to this particular problem 
are possible, although neither is very satisfactory. 
(1) An exhaustive case analysis can be undertaken, as 

is done in the analogous unresolved IF statement 
execution. 

(2) The ambiguity can be left unresolved but pre- 
served by storing conditional values for variables. 
For  example, the value of A(I) (assuming that the 
value of  I is i), might be "if i = 1 then x else if i =  3 
then y else if i = j +  1 then z . . . " .  
The conflict between discrete aspects of  computer 
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arithmetic and the continuous nature of  real numbers 
with infinite precision also is an issue in symbolic execu- 
tion. To assist in the required theorem proving and to 
make the formulas more readable, they should be simpli- 
fied as much as possible. However, many  powerful 
simplifications are prohibited if one insists that  the re- 
suiting expressions produce the same values as the 
originals when computer  evaluated, because the com- 
mutative property discussed in Section 5 would be vio- 
lated. Also, there is a gap between the truth of  a predi- 
cate and the ability of  an automatic  theorem prover to 
establish its truth. In particular, an automatic  system 
may conclude that  some IF  statement execution is un- 
resolved when, in fact, it is not. The system would then 
follow a pa th  that  could never be followed in a real 
execution. The previous claim that  pc never becomes 
false, which was made at the end of Section 2 can no 
longer be made. Of  course, even for rather simple pro- 
gramming languages the theorem proving required to 
perform a symbolic execution of programs in that  lan- 
guage becomes impossible, in theory. That  is, it is im- 
possible to build a theorem prover that will decide the 
truth or falsity for that  class of  expressions. 

10. Conclusion 

A notion of  symbolically executing a program has 
been presented which is closely related to the normal  
notion of  p rogram execution. I t  offers the advantage 
that  one symbolic execution may represent a large, 
usually infinite, class of  normal  executions. This can be 
used to great advantage in p rogram testing and de- 
bugging. The Er'~GY system built by the author and his 
colleagues was also described. I t  embodies symbolic 
execution in a general purpose interactive debugging 
system. Additional facilities based on the basic sym- 
bolic execution capability include an "exhaustive" test 
manager  and a program verifier. Interactive debugging/ 
testing systems are powerful, useful tools for program 
development. The addition of features based on sym- 
bolic execution is a significant improvement  and the 
normal  facilities are still available as a special case. 

Symbolic execution is also useful in other forms of  
program analysis, including test case generation [1,2] and 
program optimization [3, 16]. A symbolic execution sys- 
tem, such as EFFIGY, offers a natural  growth f rom to- 
day 's  systems; an evolutionary approach for achieving 
the program validation system of tomorrow is available. 
Having a running system which can be incrementally 
enhanced also provides valuable user experience and 
support.  While practical use of  the EFFIGY system is 
still quite limited, considerable insight into the general 
notion of  symbolic execution and its varied applications 
has been .gained during its construction. 

A.C. Chibib, J.A. Darringer, and S.L. Hantler. They 
have all contributed significantly to the ideas presented 
here and to the design and implementation of the 
ErFIGX' system. M.W. Blasgen, S.L. Hantler,  and J.R. 
Buchanan have each provided particularly thorough 
constructive critical comments  on earlier drafts of  this 
report  which are greatly appreciated. We also appreci- 
ate the support  and encouragement received f rom D.P. 
Rozenberg, P.C. Goldberg,  and P.S. Dauber.  
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