
Programming B. Wegbreit
Languages Editor

Symbolic Execution
and Program Testing
James C. King
IBM Thomas J. Watson Research Center

This paper describes the symbolic execution of pro-
grams. Instead of supplying the normal inputs to a
program (e.g. numbers) one supplies symbols represent-
ing arbitrary values. The execution proceeds as in a
normal execution except that values may he symbolic
formulas over the input symbols. The difficult, yet in-
teresting issues arise during the symbolic execution of
conditional branch type statements. A particular system
called EFFIGY which provides symbolic execution for
program testing and debugging is also described, it
interpretively executes programs written in a simple
PL/I style programming language. It includes many
standard debugging features, the ability to manage and
to prove things about symbolic expressions, a simple
program testing manager, and a program verifier. A
brief discussion of the relationship between symbolic
execution and program proving is also included.

Key Words and Phrases: symbolic execution, pro-
gram testing, program debugging, program proving,
program verification, symbolic interpretation

CR Categories: 4.13, 5.21, 5.24

Copyright © 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Author's address: IBM Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, N.Y. 10598.

385

1. Introduction

The large-scale production of reliable programs is
one of the fundamental requirements for applying com-
puters to today's challenging problems. Several tech-
niques are used in practice; others are the focus of cur-
rent research. The work reported in this paper is directed
at assuring that a program meets its requirements even
when formal specifications are not given. The current
technology in this area is basically a testing technology.
That is, some small sample of the data that a program is
expected to handle is presented to the program. If the
program is judged to produce correct results for the
sample, it is assumed to be correct. Much current work
[11] focuses on the question of how to choose this
sample.

Recent work on proving the correctness of programs
by formal analysis 15] shows great promise and appears
to be the ultimate technique for producing reliable pro-
grams. However, the practical accomplishments in this
area fall short of a tool for routine use. Fundamental
problems in reducing the theory to practice are not
likely to be solved in the immediate future.

Program testing and program proving can be con-
sidered as extreme alternatives. While testing, a pro-
grammer can be assured that sample test runs work cor-
rectly by carefully checking the results. The correct exe-
cution for inputs not in the sample is still in doubt. Al-
ternatively, in program proving the programmer form-
ally proves that the program meets its specification for
all executions without being required to execute the
program at all. To do this he gives a precise specifica-
tion of the correct program behavior and then follows a
formal proof procedure to show that the program and
the specification are consistent. The confidence in this
method hinges on the care and accuracy employed in
both the creation of the specification and in the con-
struction of the proof steps, as well as on the attention
to machine-dependent issues such as overflow, rounding
etc.

This paper describes a practical approach between
these two extremes. F rom one simple view, it is an en-
hanced testing technique. Instead of executing a program
on a set of sample inputs, a program is "symbolically"
executed for a set of classes of inputs. That is, each sym-
bolic execution result may be equivalent to a large num-
ber of normal test cases. These results can be checked
against the programmer's expectations for correctness
either formally or informally.

The class of inputs characterized by each symbolic
execution is determined by the dependence of the pro-
gram's control flow on its inputs. If the control flow of
the program is completely independent of the input var-
iables, a single symbolic execution will suffice to check
all possible executions of the program. If the control
flow of the program is dependent on the inputs, one
must resort to a case analysis. Often the set of input

Communications July 1976
of Volume 19
the ACM Number 7

classes needed to exhaust all possible cases is practicaUy
infinite, so this is still basically a testing methodology.
However, the input classes are determined only by those
inputs involved in the control flow, and symbolic test-
ing promises to provide better results more easily than
normal testing for most programs.

2. S y m b o l i c E xecut ion

The symbolic execution of a program is described in
this section in an ideal sense, and then, in Section 6, a
particular practical system which has been built (an ap-
proximation to the ideal) is discussed. The term ideal is
used for several reasons:

1. The assumption is made that programs deal only
with integers and, in fact, only with integers having
arbitrary magnitude. Machine register overflows are
not considered.

2. The "execution tree" (defined later) resulting from
symbolic execution of many (most) programs is
infinite.

3. The symbolic execution of IF statements requires
theorem proving which, even for modest program-
ming languages, is mechanically impossible.

Nonetheless, the discussion of the ideal does provide a
standard against which real computer systems for sym-
bolic execution can be measured.

Each programming language has an execution se-
mantics describing the data objects which program vari-
ables may represent, how statements written in the
language manipulate data objects, and how control
flows through the statements of a program. One canalso
define an alternative "symbolic execution" semantics
for a programming language where the real data ob-
jects need not be used but can be represented by arbi-
trary symbols. Symbolic execution is a natural extension
of normal execution, providing the normal computa-
tions as a special case. Computational definitions for the
basic operators of the language are extended to accept
symbolic inputs and produce symbolic formulas as
output.

Let us consider a simple programming language. Let
the program variables be exclusively of type "signed
integer". Include simple assignment statements, IF state-
ments (with THEN and ELSE clauses), GO-TO's to
labels, and some means for obtaining inputs (e.g. pro-
cedure parameters, global variables, read operations).
Restrict the arithmetic expressions to the basic integer
operators of addition (+) , subtraction (-) , and multi-
plication (X). Restrict the Boolean expressions (used in
IF statements) to the simple test of whether an arithmetic
expression is non-negative (i.e. { arith.expr.} >_ 0).

The symbolic execution of programs in this simple
language is now described taking the normal execution
sementics for granted. The execution semantics is
changed for symbolic execution, but neither the lan-

386

guage syntax nor the individual programs written in the
language are changed. The only opportunity to intro-
duce symbolic data objects (symbols representing inte-
gers) is as inputs to the program. For simplicity, let us
suppose that each time a new input value for the pro-
gram is required, it is supplied symbolically from the list
of symbols {al, ~2, ~3, • • • }. Program inputs are
eventually assigned as values to program variables
(e.g. by procedure parameters, global variables, or read
statements). Thus, to handle symbolic inputs, we allow
the values of variables to be a~'s as well as signed integer
constants.

The evaluation rules for arithmetic expressions used
in assignment and IF statements must be extended to
handle symbolic values. The expressions formed in the
usual way by the integers, a set of indeterminate sym-
bols {~1, a s , . . . }, parentheses, and the operations -b,
--, and X are the integer polynomials (integer valued,
integer coefficients) over those symbols. By allowing
program variables to assume integer polynomials over
the a~'s as values, the symbolic execution of assignment
statements follows naturally. The expression on the
right-hand side of the statement is evaluated, possibly
substituting polynomial expressions for variables. The
result is a polynomial (an integer is the trivial case) which
is then assigned as the new value of the variable on the
left-hand side of the assignment statement.

The GO-TO's to labels function exactly as in normal
executions by unconditionally transferring control
from the GO-TO statement to the statement associated
with the corresponding label.

The "state" of a program execution usually includes
the values of program variables and a statement counter
(dhnoting the statement currently being executed). The
definition of the symbolic execution of the IF statement
requires that a "path col~dition" (pc) also be included
in the execution state, pc is a Boolean expression over
the symbolic inpuls ia~}. It never contains program
variables, and for our simple language, is a conjoined
list of expressions of the form R _> 0 or --1 (R >_ 0),
where R is a polynomial over {a~}. For example:

1,~1 >__ o A ", + 2 x ~, >_ 0 A -, (,~3 > o) 1.

As will be seen, pc is the accumulator of properties
which the inputs must satisfy in order for an execution to
follow the particular associated path. Each symbolic
execution begins with pc initialized to true. As as-
sumptions about the inputs are made, in order to choose
between alternative paths through the program as pre-
sented by IF statements, those assumptions are added
(conjoined) to pc.

The symbolic execution of an IF statement begins in
a fashion similar to its normal execution: the evaluation
of the associated Boolean expression by replacing vari-
ables by their values. Since the values of variables are
polynomials over {ad, the condition is an expression
of the form: R >_ 0, where R is a polynomial. Call such
an expression q. Using the current path condition (pc)

Communications July 1976
of Volume 19
the ACM Number 7

form the two following expressions:

(a) pc D q
(b).pc D ~q.

At most one of these expressions can be true (eliminat-
ing the trivial case where pc is identically false). When
exactly one expression is true, we continue the execution
of the IF statement as usual by passing control either to
the THEN part, when expression (a) is true, or to the
ELSE part, when expression (b) is true. All normal exe-
cutions, whose input values satisfy pc, would follow the
same alternative as this symbolic execution; all would
take the THEN alternative (pc ~ q) or all would take
the ELSE alternative (pc ~ --1 q). In this case, the execu-
tion of the IF statement is called a "nonforking"
execution.

The more interesting case occurs when neither ex-
pression (a) nor expression (b) is true. In this situation
there exists at least one set of inputs to the program
which satisfy pc and would take the THEN alternative
and there exists at least one other set of inputs which
satisfy pc and would lead to the ELSE alternative. Since
each alternative is possible in this case, the only com-
plete approach is to explore both control paths. So the
symbolic execution is defined to fork into two "parallel"
executions: one following the THEN alternative, the
other, the ELSE. Both of these executions assume the
computation state which existed immediately before
execution of the IF statement but proceed independ-
ently thereafter. In this case the execution of the IF state-
ment is called a "forking" execution. Note that the
forking/nonforking characteristic is associated with a
particular execution of an IF statement and not with the
statement itself. One execution of a particular IF state-
ment may be forking, while a subsequent execution of
the same statement may be nonforking.

Since, in choosing the THEN alternative, the inputs
are assumed to satisfy q (the evaluated IF statement
Boolean), this information is recorded in pc by doing
the assignment pc ~-- pc A q. Similarly choosing the
ELSE alternative leads to pc ~-- pc A -~ q. pc is called
the "path condition" because it is the accumulation of
conditions which determines a unique control flow path
through the program. Each forking execution of an IF
statement contributes a condition over the input sym-
bols which is determined by the particular choice of
path. pc remains unchanged for nonforking executions
of IF statements, since no new assumptions are made
or needed, pc can never become false since its initial
value is true and the only operation performed on pc is

Fig. 1. Procedure SUM.

1 SUM: PROCEDURE (A,B,C);
2 X ~--- A + B;
3 Y~--B + C;
4 Z~---X + Y-- B;
5 RETURN (Z);
6 END;

an assignment of the form:

pc ~-- pc A r (where r is either q or --1 q).

but only in the case when (pc A r) is satisfiable (pc A r
~ (p c ~ ~ r) , which is satisfiable if and only if (pc D
~r) is not a theorem).

3. Examples

Consider the simple program shown in Figure 1. It
is written in a PL/I-style syntax and computes the sum of
three values. With integer inputs of 1, 3, and 5 the con-
ventional execution of this program, as shown in Figure
2, computes the output 9. The symbolic execution shown
in detail in Figure 3 has established that for any three
integers, say a~, a2, ~3, the program will calculate
their sum, al A- ~2 q- a~.

Now consider the somewhat more complicated ex-
ample shown in Figure 4 for raising an integer X to the
power Y. With the symbols ax and or2 supplied as input
for X and Y the symbolic execution would proceed as
shown in Figure 5.

4. Symbolic Execution Tree

One can generate an "execution tree" characterizing
the execution paths followed during the symbolic
execution of a procedure. Associate a node with each
statement executed (labeled with the statement number)
and with each transition between statements a directed
arc connecting the associated nodes. For each forking
IF statement execution, the associated node has two
arcs leaving the node which are labeled "T" and " F "
for the true (THEN) and false (ELSE) parts, respec-
tively. Also associate the complete current execution
state, i.e. variable values, statement counter, and pc
with each node. The execution tree for POWER (a~ ,or2)
(Figures 4 and 5) is given in Figure 6.

The trees formed in this way from a symbolic execu-
tion have the following interesting properties.

1. For each terminal leaf in the tree (corresponding
to a completed execution path) there does exist a par-
ticular nonsymbolic input to the program which, when
executed in the normal fashion, will trace the same path
(list of statements executed). This is equivalent to saying
that pc never becomes identically false. A brief argu-
ment establishing that was made at the end of Section 2.

2. pc 's associated with any two terminal leaves are
distinct (i.e. --1 (pc1 A pc.,)). The two paths from the
common root of the execution tree leading to any two
terminal leaves have a unique forking node where the
two paths diverge. At that forking node some q was
added to one pc while --1 q was added to the other. Since
neither pc becomes inconsistent (false) they must main-
tain this difference.

The significance of these comments is emphasized in

387 Communications July 1976
of Volume 19
the ACM Number 7

Fig. 2. Execution of SUM(l, 3, 5). A dash represents unchanged
values, i.e. the same values as those given in the line above; the ques-
tion mark represents undefined (uninitialized) values.

After X Y Z A B C
s ta tement Values would be

1 ? ? ? 1 3 5
2 4
3 -- 8
4 -- -- 9 -- -- --
5 (Returns 9)

Fig. 3. Symbolic execution of SUM (al, a~, a3). Path condition is
abbreviated pc.

node whose p c becomes t rue . This eommutativity can be
diagrammed as shown in Figure 9, where P represents
the program, E(P(X)) is the result of executing
program P on inputs X, and K is a set of specific integer
inputs.

Of course, this commutativity relationship is why
symbolic execution is of interest. The symbolic execu-
tions capture exactly the same effects as conventional
executions. Symbolic execution is not merely an arbi-
trary alternative execution definition but a natural exten-
sion of the conventional definition. As in the rela-
tionship between arithmetic and algebra the specific
(arithmetic) computations dictated by the program
operators are generalized and "delayed" using the ap-
propriate algebraic formulas.

After X Y Z A B C pc
statement Values would be

1 ? ? ? ~1 ~2 ~8 true
2 ~ t + ~ 2 - - - -
3 - - a2+~3 - -
4 - - - - a l + a 2 + a 8

5 (Returns atq-~2-t-~8)

the example of Figure 7. Note: DO statements are intro-
duced for simplicity. They can be expanded easily into
IF /GO T O loops to conform with the preceding nota-
tion. The execution tree for TWOLOOPS (of Figure 7)
is shown in Figure 8. Even though statement 4 of the
second loop has the same syntactic branching potential
as statement 2 of the first loop, the assumptions made
while forking at statement 2 are preserved (in p c) and
are used in statement 4, which then avoids generation
of a fork. These symbolic execution trees are similar to
the execution trees defined by Paterson for program
schemata in [13]. Paterson's trees are also discussed in
[12].

5 . C o m m u t a t i v i t y

The symbolic execution defined above for this simple
integer language satisfies an interesting commutative
property. The operation of instantiating the symbols
{a~} with specific integers, say {j~}, and the operation of
executing the program are interchangeable. That is, if
one conventionally executes a program with a specific
set of integers {j~} as inputs (instantiation of a~'s by
j~'s first, followed by execution), the results will be the
same as executing the program symbolically and then
instantiating the symbolic results (assigning j ' s to a's).
The meaning of "instantiating the symbolic results" is
first, for each terminal leaf in the execution tree, sub-
stitute j ' s for a 's in all program variable values and in
p c . Then the "results" are the values for the terminal

6 . A n I n t e r a c t i v e S y m b o l i c E x e c u t o r - - E F F I G Y

The author and his colleagues have been developing
an interactive symbolic execution system called EFFIGY.
Work began on this system in early 1973 and is stiU in
progress. The system offers a spectrum of services to the
user. Basic debugging and testing facilities are provided
for symbolic program execution with normal program
execution provided as a special case. An "exhaustive"
test manager is available for systematically exploring
the alternatives presented in the symbolic execution tree.
The system can automatically check test case results
against output assertions if they are supplied. Finally,
the system offers a program verifier which uses symbolic
execution and user supplied assertions to generate the
verification conditions, generally following the ideas of
Deutsch [4]. This paper focuses on symbolic execution
as an independent concept and on its use for program
testing.

The language for which symbolic execution is possi-
ble in EFFIGY, has been enhanced with each new version
of the system and now is written in a PL/X style syntax
and includes:
1. External procedures with PL/I parameter passing

conventions.
2. Integer valued variables (only) (FIXED BINARY

(31, 0)) and single dimensional arrays of integer
values. These variables may be declared as STATIC
or AUTOMATIC and may have INITIAL attri-
butes.

3. Assignment statements, IF statements (with THEN
and ELSE clauses), compound statements using
D O . . . END, and GO-TO statements.

4. Iterative DO and DO WHILE statements.
5. Elementary READ and WRITE statements.

6. The arithmetic, relational, and logical operators are
exclusively: q-, - , . , / , **, ABS, MOD (remainder);
> , < , > , < , = , ~ ; & (and), I (or), -a (not), D
(implies).

A full complement of interactive debugging facilities

388 Communications July 1976
of Volume 19
the ACM Number 7

is also available, including:
1. Tracing. The user can request to see the statement

number, the source statement, the computational
results, or any combination of these for any or all
statements within procedures as they are executed.

2. Breakpoints. The user can insert "breakpoints" be-
fore or after any statement Or between any statement
pair. At these points execution is interrupted and
control passes to the user's terminal. The user can
then examine the state of the execution, set vari-
ables, and resume execution.

3. State saving. As a user explores the various paths
of his program he may wish to save the state of exe-
cution to later return and explore alternative paths.
"SAVE" and " R E S T O R E " are provided for this
purpose.
Special features and commands basic to symbolic

execution are also included in the system. The user may
define arbitrary identifiers to be symbolic program in-
puts (the a 's from before) by enclosing them in double
quotes (') and using them in place of specific integer
constants. For example, the user could invoke a pro-
cedure SUM (from Figure 1) for testing by:

CALL SUM (1, 3, 5);

CALL SUM ("A", "B", "C");

CALL SUM ("A", 3, 5);

Normal execution over inte-
gers.

Symbolic execution using the
symbols A, B, and C.

A combination.

The definition of symbolic execution given earlier
dictates that for forking (unresolvable) IF statement
executions the execution proceeds in parallel on both
alternate paths (the T H E N alternative and the ELSE al-
ternative) thus generating a complete execution tree.
For most programs this is an infinite process. The
simplest, and perhaps most general, solution to this
problem is to let the user interactively choose the single
alternative path to be taken at any one time. This basic
facility is provided in EFFIGY. By use of the SAVE
and RESTORE commands, mentioned earlier, the user
can save the state of the execution and return later to
explore alternate paths. This allows the user to "walk"
the execution tree starting at the root in any way he
chooses.

Whenever the system encounters a forking execution
of an IF statement (both alternatives being possible) it
notifies the user and allows him to choose. He may:

Fig. 4. Procedure POWER.

1 POWER: PROCEDURE(X, Y);
2 Z ~--- 1;
3 J ~--- 1;
4 LAB: IF Y >_ J THEN
5 DO; Z*-- Z * X;
6 J *- J -'1- 1;
7 GO TO LAB; END;
8 RETURN (Z) ;
9 END;

1. Type "go t rue" and the system follows the T H E N al-
ternative changing pc accordingly,

2. Type "go false" and the system follows the ELSE al-
ternative changing pc accordingly, or

3. Type "assume (P); go".
In the third form P is a predicate which is first evaluated
using the current values of program variables and then
added (conjoined) to the path condition (pc). The
"go" in this case directs the system to re-execute the IF
statement using the modified pc.

For example, suppose the program variable X has
the value a, pc has the value a > 0, and the IF statement
being executed has the form:

IF X > 5 THEN $1 ELSE S~;

When evaluated X > 5 becomes a > 5. Using pc the
choice of path is unresolvable by the system since neither:

(a) a > 0 D (a > 5) nor
(b) a > 0 D - - l (a > 5) .

The system invites the user to choose. I f he types "go
true" pc is updated to a > 5 (formed from a > 0 &
a > 5) and statement $1 is executed next. If he types
"go false" pc is updated to a > 0 & -1 (a > 5) and state-
ment $2 is executed next. If he types "assume ("a" >
10); go" pc becomes a > 10 (a > 0 & a > 10) and the
IF statement is re-executed. This time

a > 1 0 ~ a > 5

is true and the execution proceeds to statement St . The
user could have gotten the same result by typing "as-
sume (X > 10); go" since X > 10 gets evaluated to a
> 10 at the first step.

When the system asks for the user's choice at a fork-
ing IF statement execution, it is, in fact, in the same
state as if the user had stopped the execution with a
breakpoint before the IF statement. As such, before the
user types "go true", "go false", or "go", he may exam-
ine program variables, set breakpoints, adjust the trace
settings, etc. Even though the definition of the ASSUME
statement is most easily motivated by the use described
above, its execution is independent of the IF statement.
As such, ASSUME statements can be entered at any
breakpoint as well as included in procedures and will
have the following effects:

1. Evaluate the ASSUME's Boolean expression.
2. Conjoin the result to the current pc (if consistent).

An ASSUME statement could be used at the beginning
of a procedure, for example, to keep the system from
considering inputs on which it was not designed to
operate.

The discussion in Section 2 was restricted to integer
polynomials for pedagogical simplicity. Canonical
forms for polynomials are well known, and so is the fact
that the set of polynomials is closed under addition and
multiplication. The generalization from arithmetic to
algebra is well understood in this case. The EFFIGY sys-
tem is implemented to deal with the more general class

389 Communications July 1976
of Volume 19
the ACM Number 7

of expressions described above. Of course, one would
like to have an EFFIGY system which operates on a com-
mon programming language like PL/I. That imposes an
extremely ambitious burden on the formula manipula-
tion and simplification component of the system. That
component of the EFFIGY system was, in fact, borrowed
from a program verifier previously built by the author
[8]. The capabilities and limitations of EFFIGY'S formula
manipulat ion are inherited directly f rom that earlier
system which is discussed in detail in [9].

7. A Further E x a m p l e

A brief description of the basic EFFIGY system is also
given in [10]. That paper contains a script f rom an actual
EFFIGY session as an Appendix which may be of interest
to some readers. An explanation of how the program of
Figure 10, SEARCH, could be checked out on EFFIGY
follows. These steps can be, and were, actually performed
on the EFFIGY system.

The program S E A R C H was written to perform a
binary search for an argument X in an array A of ele-
ments stored in ascending order. The search is confined

Fig. 5. Symbolic execution of POWER (al, a~).

After J X Y Z p c

statement Values would be

1 ? 61 63 ? t r u e

2 ~ - - - - 1 - -

3 1

4 execution in detail:
(a) evaluate Y>J getting 62>_ l.
(b) use path condition and check:

(i) t r u e ~ a2 >_ 1

(ii) t r u e ~ --1 (62 > 1

(c) neither are theorems, so fork.
Case -~ (62 _> 1) :

4 1 al a~ 1 --a (62>~ 1)
8 this case completed. (returns 1 when 6z<l.)

Case 62~ 1 :
4 1 61 62 1 63>_ 1
5 - - - - - - 6 1 - -

6 2
7

4 execution in detail:
(a) evaluate Y~J, getting a2_>2
(b) use p c :

(i) 63>1 ~ az>_2
(ii) 62>1 ~ --n(6~>_2)

(c) neither t r u e , so fork.
Case --1 (62>2) :

4 2 al 6z 6x 6s>l A "-~ (62>2)
(or simply 63=1)

8 this case completed. (returns al when a3= i.)

Case 63>2:
4 2 6t as 61 az~l A 63>__2
: : (or simply 62>_2)

In this example the symbolic execution will continue indefinitely.

to the array elements with subscripts f rom L up to and
including U. I f a match is found, the subscript value of
the array element matching X is returned in J and
F O U N D is set to 1. Otherwise, F O U N D is set to 0 and
J is set to the value such that A(J) < X < A(J-4-1). The
symbolic execution tree for this p rogram is infinite since
the initial value of (U - - L) may be arbitrarily large.

The first test of S E A R C H might take the form:

CALL SEARCH (A, 1, 5, "X", FOUND, J).

Assume the elements of the array A, A(1), A (2) , . . . ,
A(5), have been set to symbolic values "A(1)" , "A(2)" ,
• . . , "A(5)" , respectively. The constants 1, 5, and " X "
are input arguments and F O U N D and J are integer
variables which will return the results f rom SEARCH.
Symbolic execution will proceed until statement number
7, at which point the user is asked whether or not " X " =
"A(3)" . I f in response to the system's query the user
types "save; go true", the current execution state will be
saved as state 1 and the execution will run to comple-
tion determining that p c = ("X" = "A(3)") , F O U N D =
1, and J = 3. Now by typing "restore 1; go false" the
user may examine the other possibility when " X " #
"A(3)" . Continuing in this manner the user may ex-
plore the finite subtree determined by inputs 1 and 5,
and in this case find eleven terminal leaves:

p c FOUND J

X=A (3) I 3
X=A (I) & X<A (3) 1 1
X<A (I) & X<A (3) 0 0
X=A (2) & X>A (I) & X<A (3) 1 2
X>A (1) & X<A (2) & X<A (3) 0 1
X>A (1) & X>A (2) & X<A (3) 0 2
X=A (4) & X>A (3) 1 4
X>A (3) & X<A (4) 0 3
X=A (5) & X>A (3) & X>A (4) I 5
X>A (3) & X>A (4) & X<A (5) 0 4
X>A (3) & X>A (4) & X>A (5) 0 5

The user could also cause the system to generate
these eleven outputs automatically by use of the TEST
facility in EFFIGY:

TEST (200) SEARCH (A, 1, 5, "A", FOUND, J)

The 200 is used to limit the exhaustive search of the
symbolic execution tree to those paths traversing less
than 200 statement executions• In this case the limit is
unneeded since the tree is finite and small. This test
provides some evidence that the program will success-
fully find any element of the array.

One may next try:

CALL SEARCH (A, "N", "N" + 4, "X", FOUND, J)

which is a generalization of the previous test. As before,
this execution, if pursued exhaustively, will produce
eleven terminal cases matching the previous ones where
I will be replaced by " N " , 2 will be replaced by " N " +
I, etc. E.g., the second case listed above would become:

X=A(N) & X<A (N+2) 1 N

390 Communications July 1976
of Volume 19
the ACM Number 7

Fig. 6. Execution tree for POWER(a1, a~).

)

Casepc is (a2 < 1):
RETURNS 1

Casepc is (a~ = 1):
'~ RETURNS al

the argument X. The properties of these values which
are important in the program (e.g. " X " <_ "A(N)") are
uncovered during the symbolic execution. All of the
testing is done from the original program alone---no
correctness predicates are required. As discussed fur-
ther in Section 8, input, output, inductive, and check-
ing predicates can be used in conjunction with symbolic
execution of programs quite effectively for testing and
correctness proofs, but they are not required for sym-
bolic testing. As with normal execution, when testing a
program using symbolic execution, one must use care
in choosing "interesting" test cases and in deciding
when enough is enough.

8. Program Correctness, Proofs, and Symbolic Execution

{RETURNS ax ~ when pc is (az = n)}

This test gives us the additional assurance that no special
properties of the numbers 1, 2, . . . , 5 (such as being
powers of 2) affected our previous results.

Another similar but more specialized test is:

CALL SEARCH (A, "N", "N", "X", FOUND, J)

which, when exhaustively explored, creates a three leaf
tree:

pc FOUND J

X=A (N) 1 N
X<A (N) 0 N--1
X>A (N) 0 N

The two calls:

CALL SEARCH (A, 1, "N", "X", FOUND, J) and
CALL SEARCH (A, "U', "U", "X", FOUND, J)

are the most general tests and can be used to check that
"bounds averaging" and the "shrinking" of the bounds
range proceed properly. Even though both calls lead to
infinite symbolic execution trees, interesting results
like the following (derived from the first call) are
possible:

pc FOUND J

X=A((N+I)/2) & N>0 1
X=A(((N+I)/2)/2) & N>0 & 1
X<A((N+I)/2) &
(N+1)/2>1

X>A((N+I)/2) & N>0 & 1
X= A (((N+ 1)/2+N-F1)/2) &
(N+I)/2<N

(N+l)/2
((N+1)/2)/2

((N+l)/2+N+1)/2

Note that while performing all of these tests one
never supplies nonsymbolic values to the array A or to

To prove the correctness of a program using a
method presented by Floyd [6], the programmer sup-
plies an "input predicate" and an "output predicate"
with the program. The predicates define the "correct"
behavior of the program, the program being correct if
for all inputs which satisfy the input predicate the re-
suits produced by the program, if any, satisfy the output
predicate. Floyd presents a method for checking the
consistency of the program and its I /o predicates, and
thus for proving its correctness.

One of the steps in Floyd's proof method, the genera-
tion of verification conditions, can be done quite simply
by executing program paths symbolically. Deutsch in-
dependently developed the notion of symbolic execu-
tion in exploiting this proof technique in his interactive
program verifier [4].

Perhaps the simplest way to explain this technique
is using the three ancillary language statements: AS-
SUME, PROVE, and ASSERT used to associate predi-
cates with the program. All three of these statements
have a Boolean formula supplied as part of the state-
ment in parentheses after the statement name, e.g.
ASSERT(X>0). The free variables of these formulas
are assumed to be program variables. ASSUME(B) was
defined previously in Section 6. When executed, B is
evaluated using the current values of program variables,
and the resulting value is conjoined to the path condi-
tion (i.e. pc ~ p c / ~ value (B)).

The PROVE(B) statement is executed by forming the
expression:

pc ~ value(B)

and attempting to establish that it is a theorem and dis-
playing true or false accordingly. In the way PROVE is
used below, these expressions, in fact, will be the Floyd
verification conditions. The ASSERT statement will be
used later as either an ASSUME or a PROVE state-
ment depending on the context.

Besides the initial and final predicates which serve
to define the program's correctness, Floyd's method
requires associating additional "inductive predicates"

391 Communications July 1976
of Volume 19
the ACM Number 7

with various points in the program. This is usually done
such that at least one predicate is within every loop in
the program, but it can be done in any way so long as
the control flow paths, given by the program segments
between predicates, are of finite length. The inductive
predicates allow a general inductive argument to be
made (see [6] or [7]) which reduces the proof of cor-
rectness of the program to the proof of correctness of a
finite set of finite length paths.

Assume that input, output, and inductive predicates
are associated with a program by placing ASSERT
statements into the program at the appropriate points
(the initial predicate is an ASSERT statement placed
as the first statement in the program, etc.) We now have
a fixed set of paths through the program, each of which
begins with an ASSERT statement and ends with an
ASSERT statement and each must be proved correct.
That is, one must show, using any set of variable values
which satisfy the predicate at the beginning of the path,
that the values resulting from execution along the path
must satisfy the predicate at the end.

One can prove the correctness of each path by exe-
cuting it symbolically as follows:

1. Change the ASSERT at the beginning of the path to
an ASSUME; change the ASSERT at the end of the
path to a PROVE.

2. Initialize the path condition to true and all the pro-
gram variables to distinct symbols say, a l , or2,

3. Execute the path symbolically. Whenever an unre-
solved IF statement execution is encountered, do
a "go t rue" or "go false", whichever will make the
execution follow the designated path.

4. If the PROVE at the end of the path displays true,
the path is correct, otherwise it is not.

Provided that the symbolic execution satisfies the
commutative property discussed in Section 5, it is
straightforward to see that this is a valid proof method.
The program proof is carried out in terms of the values
of program variables at the beginning of the path, to
which we give symbolic names. The path condition ac-
cumulates assumptions made about those initial values.
Execution of the first ASSUME records, in the path con-
dition, the required assumptions about those initial
values. ("One must show, using any set of variable val-
ues which satisfy the predicate at the beginning of the
path that the values resulting from execution along the
path must satisfy the predicate at the end.") The formu-
las computed as a result of assignment statements
record the updated program variables' values as a func-
tion of the values at the start of the path. The action at
unresolved IF statement executions records in the path
condition the additional assumptions, again over the
path's initial values, required for any execution to
follow this particular path.

Finally the execution of the PROVE at the end of
the path sets up a theorem candidate (verification con-
dition) which expresses the question: assuming the be-

Fig. 7. Procedure TWOLOOPS.

1 TWOLOOPS: PROCEDURE (N);
2 DO J=l TO N;
3 (body of statements) END;
4 DO K=I TO N;
5 (body of statements) END;
6 END;

Fig. 8. Execution tree for procedure TWOLOOPS.

al<0

: Q I Q al~ 1

a1=2

Fig. 9. Commutativity diagram.

Symbolic Execution

(P(X),K) •"

Set parameters to
integer values

P(g)

Conventional Execution

~.(E(P(X)).K)

Substitute into result
of symbolic execution

~ , E (P (K))

Fig. 10. Procedure SEARCH.

1 SEARCH :
PROC(A, L, U, X, FOUND, J);

2 DCL A(*) INTEGER;
3 DCL (L, U, X, FOUND, J) INTEGER;
4 FOUND = 0;
5 DO WHILE (L~>U & FOUND=0);
6 J = (L+U)/2;
7 IFX = A(J) THEN FOUND = 1
8 ELSE IF X < A(J)
9 T H E N U = J--1

10 ELSE L = J+l ;
11 END;
12 IF FOUND = 0 THEN J = L--l;

13 END;

392 Communications July 1976
of Volume 19
the ACM Number 7

ginning predicate was satisfied and we followed this
path (recorded in pc), do the current (path end) values
of the program variables "satisfy the predicate at the
end?"

Given a symbolic execution system such as EFFIGY,
it is conceptually straightforward to also have it attempt
correctness proofs by the addition of a PROVE state-
ment and managerial controller to enumerate paths and
force path choices at unresolved IF statement executions.
We have done this and are using it as a tool for p/arsuing
research into correctness proof techniques.

In fact the notions of correctness proof and sym-
bolic execution are closely linked in concept as well as in
tools required to perform them. Suppose one has asso-
ciated Floyd input /output predicates with a program by
placing the input predicate as an ASSUME state-
ment at the beginning of the program and the
output predicate as a PROVE statement at the
end. With the definition of the ASSUME state-
ment given here the initial ASSUME restricts the
subsequent analysis, be it symbolic execution or a cor-
rectness proof, to only those values satisfying the initial
predicate. Adopting the definition for PROVE state-
ments necessary for correctness proofs is also a very
useful one for program testing by symbolic execution.
In program testing, symbolic or not, one must examine
the output produced and judge its correctness. If one
can formalize the correctness criteria in terms of an
output predicate and place that at the end of the pro-
gram in a PROVE statement, the symbolic executor will
then also perform the proper checking of test results.

One other comment relates to the definition of the
PROVE statement. Several languages do provide sup-
port for the normal run-time checking of predicates
placed in the program with, say, ASSERT statements
(e.g. Algol W[14]). Such statements are easily imple-
mented by considering

ASSERT (B)

as shorthand for

IF --aB THEN (some error alert such as SIGNAL ERROR).

Since this is a normal IF statement, one can consider its
symbolic execution. If the program is correct the execu-
tions of the IF statement should always be resolvable
to the false path. By the definition for symbolic execu-
tion of the IF statement, that happens only if

pc :D value(B).

Note that this is exactly what PROVE attempts to prove !
For any program whose symbolic execution tree is

finite and for which the correctness criteria has been
made explicit with input /output predicates, the ex-
haustive symbolic execution and the proof of correct-
ness done as above are exactly the same process. Since
no inductive predicates are necessary, the set of paths
requiring proof are those from the input predicate to the

393

output predicate which are the paths described by the
finite execution tree.

For programs with infinite execution trees, the sym-
bolic testing cannot be exhaustive and no absolute
proof of correctness can be established. An obvious
way to enhance symbolic execution to provide a cor-
rectness proof in all cases is to consider some form of in-
duction over the infinite parts of the execution tree. This
is in fact, exactly what Floyd's proof of correctness
method does. The inductive predicates placed within the
loops provide the inductive aid necessary for symbolic
execution to "execute" over the infinite branches of the
execution tree. Another similar yet different approach
has recently been taken by Topor and Burstall [15] to
provide the inductive assistance needed to "execute"
over the infinite branches of the tree and provide a cor-
rectness proof.

There is one notable difference, however, in the
capability required of the predicate manipulation fa-
cility for correctness proofs, from that required for
symbolic testing. If one is strictly confined to symbolic
execution without the use of any user introduced pre-
dicates, pc and the expressions requiring proof are syn-
tactically and semantically determined by the program-
ming language. However, the predicate semantics in
correctness proofs derive from the problem area of the
program and not the programming language.

It is this difference that convinces us that symbolic
execution for testing programs is a more exploitable
technique in the short term than the more general one of
program verification.

9. Practical Issues

Many of the troublesome issues arising in program
proving systems also occur in symbolic execution. For
example, a problem common to both areas is finding a
practical way to deal with variable storage-referencing.
For example, the array notation A(I) references a
different particular element of the array A depending on
the value of I. When the value of I is a symbolic ex-
pression, the particular element being referenced is a
function of the initial program inputs. In many cases,
even when all the information known about those in-
puts, as held in pc, is examined, the particular reference
may be inherently ambiguous.

At least two approaches to this particular problem
are possible, although neither is very satisfactory.
(1) An exhaustive case analysis can be undertaken, as

is done in the analogous unresolved IF statement
execution.

(2) The ambiguity can be left unresolved but pre-
served by storing conditional values for variables.
For example, the value of A(I) (assuming that the
value of I is i), might be "if i = 1 then x else if i = 3
then y else if i = j + 1 then z . . . " .
The conflict between discrete aspects of computer

Communications July 1976
of Volume 19
the ACM Number 7

arithmetic and the continuous nature of real numbers
with infinite precision also is an issue in symbolic execu-
tion. To assist in the required theorem proving and to
make the formulas more readable, they should be simpli-
fied as much as possible. However, many powerful
simplifications are prohibited if one insists that the re-
suiting expressions produce the same values as the
originals when computer evaluated, because the com-
mutative property discussed in Section 5 would be vio-
lated. Also, there is a gap between the truth of a predi-
cate and the ability of an automatic theorem prover to
establish its truth. In particular, an automatic system
may conclude that some IF statement execution is un-
resolved when, in fact, it is not. The system would then
follow a pa th that could never be followed in a real
execution. The previous claim that pc never becomes
false, which was made at the end of Section 2 can no
longer be made. Of course, even for rather simple pro-
gramming languages the theorem proving required to
perform a symbolic execution of programs in that lan-
guage becomes impossible, in theory. That is, it is im-
possible to build a theorem prover that will decide the
truth or falsity for that class of expressions.

10. Conclusion

A notion of symbolically executing a program has
been presented which is closely related to the normal
notion of p rogram execution. I t offers the advantage
that one symbolic execution may represent a large,
usually infinite, class of normal executions. This can be
used to great advantage in p rogram testing and de-
bugging. The Er'~GY system built by the author and his
colleagues was also described. I t embodies symbolic
execution in a general purpose interactive debugging
system. Additional facilities based on the basic sym-
bolic execution capability include an "exhaustive" test
manager and a program verifier. Interactive debugging/
testing systems are powerful, useful tools for program
development. The addition of features based on sym-
bolic execution is a significant improvement and the
normal facilities are still available as a special case.

Symbolic execution is also useful in other forms of
program analysis, including test case generation [1,2] and
program optimization [3, 16]. A symbolic execution sys-
tem, such as EFFIGY, offers a natural growth f rom to-
day 's systems; an evolutionary approach for achieving
the program validation system of tomorrow is available.
Having a running system which can be incrementally
enhanced also provides valuable user experience and
support. While practical use of the EFFIGY system is
still quite limited, considerable insight into the general
notion of symbolic execution and its varied applications
has been .gained during its construction.

A.C. Chibib, J.A. Darringer, and S.L. Hantler. They
have all contributed significantly to the ideas presented
here and to the design and implementation of the
ErFIGX' system. M.W. Blasgen, S.L. Hantler, and J.R.
Buchanan have each provided particularly thorough
constructive critical comments on earlier drafts of this
report which are greatly appreciated. We also appreci-
ate the support and encouragement received f rom D.P.
Rozenberg, P.C. Goldberg, and P.S. Dauber.

Received December 1974; revised January 1975

References
1. Boyer, R.S., Elspas, B., Levitt, K.N. SELECT--A formal
system for testing and debugging programs by symbolic execution.
1975 Int. Conf. on Reliable Software, April 1975, pp. 234-245.
2. Clarke, L. A system to generate test data and symbolically
execute programs. Rep. No. CU-CS-060-75, Dep. of Computer
Sci., U. of Colorado, Feb. 1975.
3. Darlington, J. A semantic approach to automatic program
improvement. Ph.D. Th., U. of Edinburgh, 1972.
4. Deutsch, L.P. An interactive program verifier. Ph.D. Th.,
Dep. of Computer Sci., U. of California, Berkeley, May 1973.
5. Elspas, B., et al. An assessment of techniques for proving
program correctness. Computing Surveys 4, 2 (June 1972), 97-147.
6. Floyd, R.W. Assigning meanings to programs, Proc. Syrup.
.4ppl. Math. Vol. 19, Amer. Math. Soc., Provincetown, R.I., 1967,
pp. 19-32.
7. King, J.C. Proving programs to be correct. IEEE Trans. on
Comp. C-20, 11 (Nov. 1971), 1331-1336.
8. King, J.C. A program verifier. Proc. IFIP Cong. 71, North-
Holland, Amsterdam, 1971, pp. 235-249.
9. King, J.C. and Floyd, R.W. An interpretation oriented
theorem prover over integers, J. Computer Syst. Sci. 6, 4(Aug.
1972), 305-323.
10. King, J.C. A new approach to program testing. 1975 Int. Conf.
on Reliable Software, April 1975, pp. 228-233.
H. Krause, K.W., et al. Optimal software test planning through
Automated network analysis. IEEE Syrup. on Computer Software
Reliability, April 1973, pp. 18-22.
12. Manna, Z. Mathematical Theory of Computation. McGraw-
Hill, New York, 1974, Ch. 4.
13. Paterson, M.S. Equivalence problems in a model of computa-
tion. Ph.D. Th., U. of Cambridge, England, Aug. 1967. Also
published as A.I. Tech. Memo No. 1 (Memo No. 211), MIT,
Nov. 1970.
14. Sites, R.L. Algol W Reference Manual. Rep. CS-230 (Clear-
inghouse No. PB 203601), Computer Sci. Dep., Stanford LI.,
Feb. 1972.
15. Topor, R.W., and Burstall, R.M. Verification of programs by
symbolic execution--progress report. Unpublished report, Dep.
of Machine Intelligence, U. of Edinburgh, Scotland, Dec. 1972.
16. Urschler, G. Complete redundant expression elimination in
flow diagrams. Rep. RC4965, IBM Research, Yorktown Heights,
N.Y., Aug. 1974.

Acknowledgments. My colleagues at IBM Research
who collaborated with me in this work are S.M. Chase,

394 Communications July 1976
of Volume 19
the ACM Number 7

