Lecture 5 First-Order Theories

Zvonimir Rakamarić University of Utah

slides acknowledgements: Zohar Manna

Last Time

- First-order theories
- Theory of equality
- Arithmetic over integers and natural numbers
 - Peano arithmetic
 - Undecidable
 - Presburger arithmetic
 - No multiplication between two variables
 - Decidable
 - Theory of integers
 - Same expressiveness as Presburger arithmetic
- Reals, rationals, arrays

This Time

- Homework assignment 1
- Planning for projects
 - All final presentations on Apr 20
 - Question: Can you stay later on Apr 20?
- Exercises with SMT solver Z3

Discussion

First-order logic

$$\forall x. \exists y. p(x, y) \rightarrow \neg p(y, x)$$

Is this formula satisfiable?

Is this formula valid?

Theory of integers

$$\forall x. \exists y. x > y \rightarrow \neg(y > x)$$

Is this formula satisfiable?

Is this formula valid?

Z3 SMT Solver

- http://rise4fun.com/z3/
- Input format is an extension of SMT-LIB standard
- Commands
 - declare-const declare a constant of a given
 type
 - declare-fun declare a function of a given type
 - assert add a formula to Z3's internal stack
 - check-sat determine if formulas currently on stack are satisfiable
 - get-model retrieve an interpretation
 - exit

Linear Integer Arith. Example 1

$$x \leq y \land z = x + 1 \rightarrow z \leq y$$

Linear Integer Arith. Example 2

$$x \leq y \land z = x - 1 \rightarrow z \leq y$$

Linear Integer Arith. Example 3

$$1 \leq x \land x + y \leq 3 \land 1 \leq y \rightarrow x = 1 \lor x = 2$$

Dog, Cat, and Mouse Puzzle (from Z3 page)

- Puzzle
 - Spend exactly \$100 and buy exactly 100 animals.
 - Dogs cost \$15, cats cost \$1, and mice cost 25 cents each.
 - You have to buy at least one of each.
 - How many of each should you buy?
- Use linear integer arithmetic
 - Hint: turn dollar amounts into cents

Scheduling Example

	Machine I	Machine 2
Job I	2	I
Job 2	3	I
Job 3	2	3

- Table gives time units required to process Job x on Machine y
- For a job, complete a phase on Machine 1 before starting the next on Machine 2
- Find using Z3 whether jobs can be scheduled in T time units
 - ► Try T=6, T=7, T=8

Next Time

Symbolic execution