
Lecture 17

Context Bounding Checkers

Zvonimir Rakamarić
University of Utah

CS 5110/6110 – Rigorous System Design | Spring 2016

Mar-3

Huge Number of Thread Schedules

 Concurrent program with n threads where each

thread has k instructions has

(n*k)! / (k!)n ¸ (n!)k

 interleavings

 Exponential in both n and k!

 Example: 5 threads with 5 instruction each

25! / 5!5 = 6.2336074e+14

 = 623 trillion interleavings

Java Path Finder (JPF)

 Program checker for Java

 Properties to be verified

 Program assertions

 LTL properties

 Depth-first and breadth-first search, heuristics

 Uses static analysis techniques to improve the

efficiency of the search

 Requires a complete Java program

 Cannot handle native code

Combating State Space Explosion

 Symmetry reduction

 Search equivalent states only once

 Partial order reduction

 Do not search thread interleavings that generate

equivalent behavior

 Static analyses

 Reduce state space using static analyses

 User-provided restrictions

 Manually bound variable domains, array sizes,…

This Time

 Context-bounded verification of concurrent

programs

 Sequentialization of concurrent programs

Context-Bounded Verification

slides acknowledgements: Shaz Qadeer, Madan Musuvathi

Context-Bounded Verification

          

Context Context Context

Context switch Context switch

 Many subtle concurrency errors are manifested in

executions with few context switches

 Analyze all executions with few context switches

Context-Bounded Reachability Problem

 An execution is c-bounded if every thread has

at most c contexts

 Does there exist a c-bounded execution from a

state S to a state E?

CB Reachability is NP-Complete

 Membership in NP

 Witness is an initial state and n*c sequences each

of length at most |L × G|

 n = # of threads, c = # of contexts

 L = # of program locations, G = # of global states

 NP-hardness

 Reduction from the CIRCUIT-SAT problem

Complexity of Safety Verification

Unbounded Context-bounded

Finite-state

systems

Pushdown

systems

PSPACE

complete
NP-complete

Undecidable NP-complete

CHESS: Systematic Testing for Concurrency

 CHESS is a user-mode scheduler

 Controls all scheduling nondeterminism

 Replace the OS scheduler

 Guarantees:

 Every program run takes a different thread

interleaving

 Reproduce the interleaving for every run

CHESS Architecture

CHESS

Scheduler

Unmanaged

Program

Windows

Managed

Program

CLR

• Every run takes a different

interleaving

• Reproduce the interleaving

for every run

CHESS

Exploration

Engine

Win32

 Wrappers

.NET

 Wrappers

x = 1;

 …

 …

 …

 …

 …

x = k;

State-Space Explosion

x = 1;

 …

 …

 …

 …

 …

x = k;

…

n threads

k steps
 each

 Number of executions is O(nnk)

 Exponential in both n and k

 Typically: n < 10, k > 1000

 Limits scalability to large

programs

Goal: Scale CHESS to large programs (large k)

Thread 1 Thread n

Preemption-Bounding

 Prioritize executions with small # of preemptions

 Two kinds of context switches:
 Preemptions – forced by the scheduler

 E.g., time-slice expiration

 Non-preemptions – a thread voluntarily yields
 E.g., blocking on an unavailable lock, thread end

x = 1;

if (p != 0) {

 x = p->f;

} x = p->f;

}

x = 1;

if (p != 0) {

p = 0;

preemption

non-preemption

Thread 1 Thread 2

Preemption-Bounding in CHESS

 The scheduler has a budget of c preemptions

 Nondeterministically choose the preemption points

 Resort to non-preemptive scheduling after c

preemptions

 Once all executions explored with c

preemptions

 Try with c+1 preemptions

Property 1: Polynomial Bound

 Terminating program with fixed inputs and
deterministic threads
 n threads, k steps each, c preemptions

 Number of executions <= nkCc * (n+c)!

 = O((n2k)c * n!)

 Exponential in n and c, but not in k!

x = 1;

 …

 …

 …

 …

x = 1;

 …

 …

 …

 …

x = k;

x = 1;

 …

 …

 …

 …

 …

x = k;

x = 1;

 …

 …

 …

 …

 …

x = k;

 …

 …

x = k;

• Choose c preemption points

• Permute n+c atomic blocks

Thread 1 Thread 2

Property 2: Simple Error Traces

 Finds smallest number of preemptions to the
error

 Number of preemptions better metric of error
complexity than execution length

Property 3: Coverage Metric

 If search terminates with preemption-bound of

c, then any remaining error must require at

least c+1 preemptions

 Intuitive estimate for

 The complexity of the bugs remaining in the

program

 The chance of their occurrence in practice

Property 4: Many Bugs with Few Preemptions

Program kLOC Threads Preemptions Bugs

Work-Stealing

Queue
1.3 3 2 3

CDS 6.2 3 2 1

CCR 9.3 3 2 2

ConcRT 16.5 4 3 4

Dryad 18.1 25 2 7

APE 18.9 4 2 4

STM 20.2 2 2 2

PLINQ 23.8 8 2 1

TPL 24.1 8 2 9

Coverage vs Preemption-Bound

Sequentialization of

Concurrent Programs

Concurrent Using Sequential

 Transform context bounded analysis of

concurrent programs into analysis of sequential

programs

 KISS [Qadeer, Wu, PLDI ‘04]

 Only up to 2 context switches

 [Lal, Reps, CAV ‘08], [La Torre, Madhusudan,

Parlato, CAV ‘09]

 More general transformations, N context switches

 Applied only on small, manually constructed

Boolean programs

Simple Translation Example

 Translation of one concurrent trace

 Two threads: Thread1, Thread2

 One shared variable: g

 3 context switches, 4 execution segments (or
contexts)

 Main idea [Lal, Reps, CAV ’08]
 Avoid storing local state

 Introduce unconstrained symbolic “prophecy”
values instead of still unavailable “future” values

 Constrain them when “future” values become
available

1 2

3
4

g1

g1'

g2

g2'

g4

g4'

1

g1

g1' g := v3

assume v3 = g2'

g := g1'

g := g3'

3

g3

g3'

2

g2

g2'

4

g4

g4'

Thread1 Thread2

g3

g3'

Lal-Reps Translation

T1 || T2

assert F

INIT;

L1: T1
s;

L2: T2
s;

L3: END;

assert F

int g1, g2,…gN, v2,…vN;

int k := 1;

assume (g2 = v2 && g3 = v3 ... gN = vN);

st  switch(k):

 case 1: Schedule; st[g1/g];

 case 2: Schedule; st[g2/g];

…

assume (g1 = v2 && g2 = v3 …);

Schedule

if (k <= N) {if (*) k++;}

else {k := 1; goto Li+1};

 N contexts per thread, shared variable g

Field Abstraction Example

 Before

tmp = x->f;

tmp = nondet();

tmp = x->f;

tmp = x->g;

y->g = tmp;

 Abstraction…

 Fields = {f,g}

 Tracked fields = {f}

tmp = x->g;

y->g = tmp;

Field Abstraction CEGAR

 How to discover tracked fields automatically?

 Algorithm based on CounterExample Guided

Abstraction Refinement (CEGAR) framework

A = Abstract(P, trackedFields)

Check(A)

trackedFields = {}

Real

Error?

Analyze counterexample

Add new fields to trackedFields

No

Counterexample

Yes

Return error trace

Done
Checked

Experimental Results

 Prototype implementation: STORM

 4 Windows Device Drivers

 Harness

 Creates driver request that gets processed

concurrently by multiple routines

 Dispatch | Cancellation

 Dispatch | Cancellation | Completion

 Dispatch | Cancellation | Completion | DPC

 Checked property

 Driver request cannot be used after it has been

completed (i.e. use after free)

Driver kLOC #T Routine 1 2 3 4 5

usbsamp

Bug found!
4 3

read 17.9 37.7 65.8 66.8 85.2

write 17.8 48.8 52.3 74.3 109.7

ioctl 4.4 5.0 5.1 5.3 5.4

usbsamp_fix 4 3

read 16.9 28.2 38.6 46.7 47.5

write 18.1 32.2 46.9 52.5 63.6

ioctl 4.8 4.7 5.1 5.1 5.2

mqueue 14 4

read 62.1 161.5 236.2 173.0 212.4

write 48.6 113.4 171.2 177.4 192.3

ioctl 120.6 198.6 204.7 176.1 199.9

daytona 22 2 ioctl 3.4 3.8 4.2 4.5 5.6

serial 32 3
read 36.5 95.4 103.4 240.5 281.4

write 37.3 164.3 100.8 233.0 649.8

 Manually provided tracked fields

Varying Number of Contexts N

Driver Routine #Fields

Total

#TFieds

Manual

#TFields

CEGAR

#CEGAR

Iterations

Time (s)

daytona ioctl 53 3 3 3 244.3

mqueue

read

72 7

9 9 3446.3

write 8 8 3010.0

ioctl 9 9 3635.6

usbsamp_fix

read

113 1

3 3 4382.4

write 4 4 2079.2

ioctl 0 0 21.7

serial
read

214 5
5 5 3013.7

write 4 3 1729.4

 N=2

Field Abstraction CEGAR

Bug Found (usbsamp)

 Sample driver in WinDDK

 Example of how to write device drivers

 Copy-pasted by driver vendors

 Checked using existing tools

 Bug confirmed and fixed

 Requires 3 context switches
 SLAM (SDV) – checks sequential code

 KISS – only up to 2 context switches

 Bug could not be found by other tools

Bug Found

ReadRoutine(req) {

 ...

 WdfRequestMarkCancelable(

 req, CancelRoutine);

 ...

 WdfRequestComplete(req);

 ...

}

CancelRoutine(req) {

 assume (CancelRoutineSet

&& !reqCompleted);

 ...

 GetRequestContext(req);

 ...

}

Thread1

Dispatch Routine

Thread2

Cancellation Routine

