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Huge Number of Thread Schedules 

 Concurrent program with n threads where each 

thread has k instructions has 

(n*k)! / (k!)n ¸ (n!)k 

 interleavings 

 Exponential in both n and k! 

 Example: 5 threads with 5 instruction each 

25! / 5!5 = 6.2336074e+14 

                          = 623 trillion interleavings 



Java Path Finder (JPF) 

 Program checker for Java 

 Properties to be verified   

 Program assertions 

 LTL properties 

 Depth-first and breadth-first search, heuristics 

 Uses static analysis techniques to improve the 

efficiency of the search 

 Requires a complete Java program 

 Cannot handle native code 



Combating State Space Explosion 

 Symmetry reduction 

 Search equivalent states only once  

 Partial order reduction 

 Do not search thread interleavings that generate 

equivalent behavior 

 Static analyses 

 Reduce state space using static analyses 

 User-provided restrictions 

 Manually bound variable domains, array sizes,… 

 



This Time 

 Context-bounded verification of concurrent 

programs 

 Sequentialization of concurrent programs 



Context-Bounded Verification 

slides acknowledgements:  Shaz Qadeer, Madan Musuvathi 



Context-Bounded Verification 

                    

Context Context Context 

Context switch Context switch 

 Many subtle concurrency errors are manifested in 

executions with few context switches 

 Analyze all executions with few context switches 



Context-Bounded Reachability Problem 

 An execution is c-bounded if every thread has 

at most c contexts 

 Does there exist a c-bounded execution from a 

state S to a state E? 



CB Reachability is NP-Complete 

 Membership in NP 

 Witness is an initial state and n*c sequences each 

of length at most |L × G| 

 n = # of threads, c = # of contexts 

 L = # of program locations, G = # of global states 

 NP-hardness 

 Reduction from the CIRCUIT-SAT problem 



Complexity of Safety Verification 

Unbounded Context-bounded 

Finite-state 

systems 

Pushdown 

systems 

PSPACE 

complete 
NP-complete 

Undecidable NP-complete 



CHESS: Systematic Testing for Concurrency 

 CHESS is a user-mode scheduler 

 Controls all scheduling nondeterminism 

 Replace the OS scheduler 

 Guarantees: 

 Every program run takes a different thread 

interleaving 

 Reproduce the interleaving for every run 



CHESS Architecture 

CHESS 

Scheduler  

Unmanaged 

Program 

Windows 

Managed 

Program 

CLR 

• Every run takes a different 

interleaving 

• Reproduce the interleaving 

for every run 

CHESS 

Exploration 

Engine  

Win32 

 Wrappers 

.NET 

 Wrappers 
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State-Space Explosion 

x = 1; 

  … 

  … 

  … 

  … 

  … 

x = k; 

… 

n threads 

k steps  
 each 

 Number of executions is O(nnk) 

 Exponential in both n and k 

 Typically: n < 10, k > 1000 

 Limits scalability to large 

programs 

Goal: Scale CHESS to large programs (large k) 

Thread 1 Thread n 



Preemption-Bounding 

 Prioritize executions with small # of preemptions 

 Two kinds of context switches: 
 Preemptions – forced by the scheduler 

 E.g., time-slice expiration 

 Non-preemptions – a thread voluntarily yields 
 E.g., blocking on an unavailable lock, thread end 

x = 1; 

if (p != 0) { 

        x = p->f; 

}       x = p->f; 

} 

x = 1; 

if (p != 0) { 

p = 0; 

preemption 

non-preemption 

Thread 1 Thread 2 



Preemption-Bounding in CHESS 

 The scheduler has a budget of c preemptions 

 Nondeterministically choose the preemption points 

 Resort to non-preemptive scheduling after c 

preemptions 

 Once all executions explored with c 

preemptions 

 Try with c+1 preemptions 



Property 1: Polynomial Bound 

 Terminating program with fixed inputs and 
deterministic threads 
 n threads, k steps each, c preemptions 

 Number of executions <= nkCc * (n+c)!  

                                         = O((n2k)c * n!) 

 Exponential in n and c, but not in k! 

x = 1; 

  … 

  … 

  … 

  … 

x = 1; 

  … 

  … 

  … 

  … 

x = k; 

x = 1; 

  … 

  … 

  … 

  … 

  … 

x = k; 

x = 1; 

  … 

  … 

  … 

  … 

  …   

x = k; 

  … 

  …   

x = k; 

• Choose c preemption points 

• Permute n+c atomic blocks 

Thread 1 Thread 2 



Property 2: Simple Error Traces 

 Finds smallest number of preemptions to the 
error 

 Number of preemptions better metric of error 
complexity than execution length 



Property 3: Coverage Metric 

 If search terminates with preemption-bound of 

c, then any remaining error must require at 

least c+1 preemptions 

 Intuitive estimate for 

 The complexity of the bugs remaining in the 

program 

 The chance of their occurrence in practice 



Property 4: Many Bugs with Few Preemptions 

Program kLOC Threads Preemptions Bugs 

Work-Stealing 

Queue 
1.3 3 2 3 

CDS 6.2 3 2 1 

CCR 9.3 3 2 2 

ConcRT 16.5 4 3 4 

Dryad 18.1 25 2 7 

APE 18.9 4 2 4 

STM 20.2 2 2 2 

PLINQ 23.8 8 2 1 

TPL 24.1 8 2 9 



Coverage vs Preemption-Bound 



Sequentialization of 

Concurrent Programs 



Concurrent Using Sequential 

 Transform context bounded analysis of 

concurrent programs into analysis of sequential 

programs 

 KISS [Qadeer, Wu, PLDI ‘04] 

 Only up to 2 context switches 

 [Lal, Reps, CAV ‘08], [La Torre, Madhusudan, 

Parlato, CAV ‘09] 

 More general transformations, N context switches 

 Applied only on small, manually constructed 

Boolean programs 



Simple Translation Example 

 Translation of one concurrent trace 

 Two threads: Thread1, Thread2 

 One shared variable: g 

 3 context switches, 4 execution segments (or 
contexts) 

 Main idea [Lal, Reps, CAV ’08] 
 Avoid storing local state 

 Introduce unconstrained symbolic “prophecy” 
values instead of still unavailable “future” values 

 Constrain them when “future” values become 
available 



1 2 

3 
4 

g1 

g1' 

g2 

g2' 

g4 

g4' 

1 

g1 

g1' g := v3 

assume v3 = g2' 

g := g1' 

g := g3' 

3 

g3 

g3' 

2 

g2 

g2' 

4 

g4 

g4' 

Thread1 Thread2 

g3 

g3' 



Lal-Reps Translation 

T1 || T2 

assert F 

INIT; 

L1: T1
s; 

L2: T2
s; 

L3: END; 

assert F 

int g1, g2,…gN, v2,…vN; 

int k := 1; 

assume (g2 = v2 && g3 = v3 ... gN = vN); 

st   switch(k): 

 case 1:  Schedule; st[g1/g]; 

 case 2:  Schedule; st[g2/g]; 

… 

assume (g1 = v2 && g2 = v3 …); 

Schedule 

if (k <= N) {if (*) k++;} 

else {k := 1; goto Li+1}; 

 N contexts per thread, shared variable g 



Field Abstraction Example 

 Before 

tmp = x->f; 

tmp = nondet(); 

tmp = x->f; 

tmp = x->g; 

y->g = tmp; 

 Abstraction… 

 Fields = {f,g} 

 Tracked fields = {f} 

 

tmp = x->g; 

y->g = tmp; 



Field Abstraction CEGAR 

 How to discover tracked fields automatically? 

 Algorithm based on CounterExample Guided 

Abstraction Refinement (CEGAR) framework 



A = Abstract(P, trackedFields) 

Check(A) 

trackedFields = {} 

Real 

Error? 

Analyze counterexample 

Add new fields to trackedFields 

No 

Counterexample 

Yes 

Return error trace 

Done 
Checked 



Experimental Results 

 Prototype implementation: STORM 

 4 Windows Device Drivers 

 Harness 

 Creates driver request that gets processed 

concurrently by multiple routines 

 Dispatch | Cancellation 

 Dispatch | Cancellation | Completion 

 Dispatch | Cancellation | Completion | DPC 

 Checked property 

 Driver request cannot be used after it has been 

completed (i.e. use after free) 



Driver kLOC #T Routine 1 2 3 4 5 

usbsamp 

Bug found! 
4 3 

read 17.9 37.7 65.8 66.8 85.2 

write 17.8 48.8 52.3 74.3 109.7 

ioctl 4.4 5.0 5.1 5.3 5.4 

usbsamp_fix 4 3 

read 16.9 28.2 38.6 46.7 47.5 

write 18.1 32.2 46.9 52.5 63.6 

ioctl 4.8 4.7 5.1 5.1 5.2 

mqueue 14 4 

read 62.1 161.5 236.2 173.0 212.4 

write 48.6 113.4 171.2 177.4 192.3 

ioctl 120.6 198.6 204.7 176.1 199.9 

daytona 22 2 ioctl 3.4 3.8 4.2 4.5 5.6 

serial 32 3 
read 36.5 95.4 103.4 240.5 281.4 

write 37.3 164.3 100.8 233.0 649.8 

 Manually provided tracked fields 

Varying Number of Contexts N 



Driver Routine #Fields 

Total 

#TFieds 

Manual 

#TFields 

CEGAR 

#CEGAR 

Iterations 

Time (s) 

daytona ioctl 53 3 3 3 244.3 

mqueue 

read 

72 7 

9 9 3446.3 

write 8 8 3010.0 

ioctl 9 9 3635.6 

usbsamp_fix 

read 

113 1 

3 3 4382.4 

write 4 4 2079.2 

ioctl 0 0 21.7 

serial 
read 

214 5 
5 5 3013.7 

write 4 3 1729.4 

 N=2 

Field Abstraction CEGAR 



Bug Found (usbsamp) 

 Sample driver in WinDDK 

 Example of how to write device drivers 

 Copy-pasted by driver vendors 

 Checked using existing tools 

 Bug confirmed and fixed 

 Requires 3 context switches 
 SLAM (SDV) – checks sequential code 

 KISS – only up to 2 context switches 

 Bug could not be found by other tools 



Bug Found 

ReadRoutine(req) { 

  ... 

  WdfRequestMarkCancelable( 

    req, CancelRoutine); 

  ... 

  WdfRequestComplete(req); 

  ... 

} 

CancelRoutine(req) { 

  assume (CancelRoutineSet 

&& !reqCompleted); 

  ... 

  GetRequestContext(req); 

  ... 

} 

Thread1 

Dispatch Routine 

Thread2 

Cancellation Routine 


