
Lecture 17

Context Bounding Checkers

Zvonimir Rakamarić
University of Utah

CS 5110/6110 – Rigorous System Design | Spring 2016

Mar-3

Huge Number of Thread Schedules

 Concurrent program with n threads where each

thread has k instructions has

(n*k)! / (k!)n ¸ (n!)k

 interleavings

 Exponential in both n and k!

 Example: 5 threads with 5 instruction each

25! / 5!5 = 6.2336074e+14

 = 623 trillion interleavings

Java Path Finder (JPF)

 Program checker for Java

 Properties to be verified

 Program assertions

 LTL properties

 Depth-first and breadth-first search, heuristics

 Uses static analysis techniques to improve the

efficiency of the search

 Requires a complete Java program

 Cannot handle native code

Combating State Space Explosion

 Symmetry reduction

 Search equivalent states only once

 Partial order reduction

 Do not search thread interleavings that generate

equivalent behavior

 Static analyses

 Reduce state space using static analyses

 User-provided restrictions

 Manually bound variable domains, array sizes,…

This Time

 Context-bounded verification of concurrent

programs

 Sequentialization of concurrent programs

Context-Bounded Verification

slides acknowledgements: Shaz Qadeer, Madan Musuvathi

Context-Bounded Verification

Context Context Context

Context switch Context switch

 Many subtle concurrency errors are manifested in

executions with few context switches

 Analyze all executions with few context switches

Context-Bounded Reachability Problem

 An execution is c-bounded if every thread has

at most c contexts

 Does there exist a c-bounded execution from a

state S to a state E?

CB Reachability is NP-Complete

 Membership in NP

 Witness is an initial state and n*c sequences each

of length at most |L × G|

 n = # of threads, c = # of contexts

 L = # of program locations, G = # of global states

 NP-hardness

 Reduction from the CIRCUIT-SAT problem

Complexity of Safety Verification

Unbounded Context-bounded

Finite-state

systems

Pushdown

systems

PSPACE

complete
NP-complete

Undecidable NP-complete

CHESS: Systematic Testing for Concurrency

 CHESS is a user-mode scheduler

 Controls all scheduling nondeterminism

 Replace the OS scheduler

 Guarantees:

 Every program run takes a different thread

interleaving

 Reproduce the interleaving for every run

CHESS Architecture

CHESS

Scheduler

Unmanaged

Program

Windows

Managed

Program

CLR

• Every run takes a different

interleaving

• Reproduce the interleaving

for every run

CHESS

Exploration

Engine

Win32

 Wrappers

.NET

 Wrappers

x = 1;

 …

 …

 …

 …

 …

x = k;

State-Space Explosion

x = 1;

 …

 …

 …

 …

 …

x = k;

…

n threads

k steps
 each

 Number of executions is O(nnk)

 Exponential in both n and k

 Typically: n < 10, k > 1000

 Limits scalability to large

programs

Goal: Scale CHESS to large programs (large k)

Thread 1 Thread n

Preemption-Bounding

 Prioritize executions with small # of preemptions

 Two kinds of context switches:
 Preemptions – forced by the scheduler

 E.g., time-slice expiration

 Non-preemptions – a thread voluntarily yields
 E.g., blocking on an unavailable lock, thread end

x = 1;

if (p != 0) {

 x = p->f;

} x = p->f;

}

x = 1;

if (p != 0) {

p = 0;

preemption

non-preemption

Thread 1 Thread 2

Preemption-Bounding in CHESS

 The scheduler has a budget of c preemptions

 Nondeterministically choose the preemption points

 Resort to non-preemptive scheduling after c

preemptions

 Once all executions explored with c

preemptions

 Try with c+1 preemptions

Property 1: Polynomial Bound

 Terminating program with fixed inputs and
deterministic threads
 n threads, k steps each, c preemptions

 Number of executions <= nkCc * (n+c)!

 = O((n2k)c * n!)

 Exponential in n and c, but not in k!

x = 1;

 …

 …

 …

 …

x = 1;

 …

 …

 …

 …

x = k;

x = 1;

 …

 …

 …

 …

 …

x = k;

x = 1;

 …

 …

 …

 …

 …

x = k;

 …

 …

x = k;

• Choose c preemption points

• Permute n+c atomic blocks

Thread 1 Thread 2

Property 2: Simple Error Traces

 Finds smallest number of preemptions to the
error

 Number of preemptions better metric of error
complexity than execution length

Property 3: Coverage Metric

 If search terminates with preemption-bound of

c, then any remaining error must require at

least c+1 preemptions

 Intuitive estimate for

 The complexity of the bugs remaining in the

program

 The chance of their occurrence in practice

Property 4: Many Bugs with Few Preemptions

Program kLOC Threads Preemptions Bugs

Work-Stealing

Queue
1.3 3 2 3

CDS 6.2 3 2 1

CCR 9.3 3 2 2

ConcRT 16.5 4 3 4

Dryad 18.1 25 2 7

APE 18.9 4 2 4

STM 20.2 2 2 2

PLINQ 23.8 8 2 1

TPL 24.1 8 2 9

Coverage vs Preemption-Bound

Sequentialization of

Concurrent Programs

Concurrent Using Sequential

 Transform context bounded analysis of

concurrent programs into analysis of sequential

programs

 KISS [Qadeer, Wu, PLDI ‘04]

 Only up to 2 context switches

 [Lal, Reps, CAV ‘08], [La Torre, Madhusudan,

Parlato, CAV ‘09]

 More general transformations, N context switches

 Applied only on small, manually constructed

Boolean programs

Simple Translation Example

 Translation of one concurrent trace

 Two threads: Thread1, Thread2

 One shared variable: g

 3 context switches, 4 execution segments (or
contexts)

 Main idea [Lal, Reps, CAV ’08]
 Avoid storing local state

 Introduce unconstrained symbolic “prophecy”
values instead of still unavailable “future” values

 Constrain them when “future” values become
available

1 2

3
4

g1

g1'

g2

g2'

g4

g4'

1

g1

g1' g := v3

assume v3 = g2'

g := g1'

g := g3'

3

g3

g3'

2

g2

g2'

4

g4

g4'

Thread1 Thread2

g3

g3'

Lal-Reps Translation

T1 || T2

assert F

INIT;

L1: T1
s;

L2: T2
s;

L3: END;

assert F

int g1, g2,…gN, v2,…vN;

int k := 1;

assume (g2 = v2 && g3 = v3 ... gN = vN);

st switch(k):

 case 1: Schedule; st[g1/g];

 case 2: Schedule; st[g2/g];

…

assume (g1 = v2 && g2 = v3 …);

Schedule

if (k <= N) {if (*) k++;}

else {k := 1; goto Li+1};

 N contexts per thread, shared variable g

Field Abstraction Example

 Before

tmp = x->f;

tmp = nondet();

tmp = x->f;

tmp = x->g;

y->g = tmp;

 Abstraction…

 Fields = {f,g}

 Tracked fields = {f}

tmp = x->g;

y->g = tmp;

Field Abstraction CEGAR

 How to discover tracked fields automatically?

 Algorithm based on CounterExample Guided

Abstraction Refinement (CEGAR) framework

A = Abstract(P, trackedFields)

Check(A)

trackedFields = {}

Real

Error?

Analyze counterexample

Add new fields to trackedFields

No

Counterexample

Yes

Return error trace

Done
Checked

Experimental Results

 Prototype implementation: STORM

 4 Windows Device Drivers

 Harness

 Creates driver request that gets processed

concurrently by multiple routines

 Dispatch | Cancellation

 Dispatch | Cancellation | Completion

 Dispatch | Cancellation | Completion | DPC

 Checked property

 Driver request cannot be used after it has been

completed (i.e. use after free)

Driver kLOC #T Routine 1 2 3 4 5

usbsamp

Bug found!
4 3

read 17.9 37.7 65.8 66.8 85.2

write 17.8 48.8 52.3 74.3 109.7

ioctl 4.4 5.0 5.1 5.3 5.4

usbsamp_fix 4 3

read 16.9 28.2 38.6 46.7 47.5

write 18.1 32.2 46.9 52.5 63.6

ioctl 4.8 4.7 5.1 5.1 5.2

mqueue 14 4

read 62.1 161.5 236.2 173.0 212.4

write 48.6 113.4 171.2 177.4 192.3

ioctl 120.6 198.6 204.7 176.1 199.9

daytona 22 2 ioctl 3.4 3.8 4.2 4.5 5.6

serial 32 3
read 36.5 95.4 103.4 240.5 281.4

write 37.3 164.3 100.8 233.0 649.8

 Manually provided tracked fields

Varying Number of Contexts N

Driver Routine #Fields

Total

#TFieds

Manual

#TFields

CEGAR

#CEGAR

Iterations

Time (s)

daytona ioctl 53 3 3 3 244.3

mqueue

read

72 7

9 9 3446.3

write 8 8 3010.0

ioctl 9 9 3635.6

usbsamp_fix

read

113 1

3 3 4382.4

write 4 4 2079.2

ioctl 0 0 21.7

serial
read

214 5
5 5 3013.7

write 4 3 1729.4

 N=2

Field Abstraction CEGAR

Bug Found (usbsamp)

 Sample driver in WinDDK

 Example of how to write device drivers

 Copy-pasted by driver vendors

 Checked using existing tools

 Bug confirmed and fixed

 Requires 3 context switches
 SLAM (SDV) – checks sequential code

 KISS – only up to 2 context switches

 Bug could not be found by other tools

Bug Found

ReadRoutine(req) {

 ...

 WdfRequestMarkCancelable(

 req, CancelRoutine);

 ...

 WdfRequestComplete(req);

 ...

}

CancelRoutine(req) {

 assume (CancelRoutineSet

&& !reqCompleted);

 ...

 GetRequestContext(req);

 ...

}

Thread1

Dispatch Routine

Thread2

Cancellation Routine

