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Huge Number of Thread Schedules 

 Concurrent program with n threads where each 

thread has k instructions has 

(n*k)! / (k!)n ¸ (n!)k 

 interleavings 

 Exponential in both n and k! 

 Example: 5 threads with 5 instruction each 

25! / 5!5 = 6.2336074e+14 

                          = 623 trillion interleavings 



Java Path Finder (JPF) 

 Program checker for Java 

 Properties to be verified   

 Program assertions 

 LTL properties 

 Depth-first and breadth-first search, heuristics 

 Uses static analysis techniques to improve the 

efficiency of the search 

 Requires a complete Java program 

 Cannot handle native code 



Combating State Space Explosion 

 Symmetry reduction 

 Search equivalent states only once  

 Partial order reduction 

 Do not search thread interleavings that generate 

equivalent behavior 

 Static analyses 

 Reduce state space using static analyses 

 User-provided restrictions 

 Manually bound variable domains, array sizes,… 

 



This Time 

 Context-bounded verification of concurrent 

programs 

 Sequentialization of concurrent programs 



Context-Bounded Verification 

slides acknowledgements:  Shaz Qadeer, Madan Musuvathi 



Context-Bounded Verification 

                    

Context Context Context 

Context switch Context switch 

 Many subtle concurrency errors are manifested in 

executions with few context switches 

 Analyze all executions with few context switches 



Context-Bounded Reachability Problem 

 An execution is c-bounded if every thread has 

at most c contexts 

 Does there exist a c-bounded execution from a 

state S to a state E? 



CB Reachability is NP-Complete 

 Membership in NP 

 Witness is an initial state and n*c sequences each 

of length at most |L × G| 

 n = # of threads, c = # of contexts 

 L = # of program locations, G = # of global states 

 NP-hardness 

 Reduction from the CIRCUIT-SAT problem 



Complexity of Safety Verification 

Unbounded Context-bounded 

Finite-state 

systems 

Pushdown 

systems 

PSPACE 

complete 
NP-complete 

Undecidable NP-complete 



CHESS: Systematic Testing for Concurrency 

 CHESS is a user-mode scheduler 

 Controls all scheduling nondeterminism 

 Replace the OS scheduler 

 Guarantees: 

 Every program run takes a different thread 

interleaving 

 Reproduce the interleaving for every run 



CHESS Architecture 
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x = k; 

State-Space Explosion 

x = 1; 

  … 

  … 

  … 

  … 

  … 

x = k; 

… 

n threads 

k steps  
 each 

 Number of executions is O(nnk) 

 Exponential in both n and k 

 Typically: n < 10, k > 1000 

 Limits scalability to large 

programs 

Goal: Scale CHESS to large programs (large k) 

Thread 1 Thread n 



Preemption-Bounding 

 Prioritize executions with small # of preemptions 

 Two kinds of context switches: 
 Preemptions – forced by the scheduler 

 E.g., time-slice expiration 

 Non-preemptions – a thread voluntarily yields 
 E.g., blocking on an unavailable lock, thread end 

x = 1; 

if (p != 0) { 

        x = p->f; 

}       x = p->f; 

} 

x = 1; 

if (p != 0) { 

p = 0; 

preemption 

non-preemption 

Thread 1 Thread 2 



Preemption-Bounding in CHESS 

 The scheduler has a budget of c preemptions 

 Nondeterministically choose the preemption points 

 Resort to non-preemptive scheduling after c 

preemptions 

 Once all executions explored with c 

preemptions 

 Try with c+1 preemptions 



Property 1: Polynomial Bound 

 Terminating program with fixed inputs and 
deterministic threads 
 n threads, k steps each, c preemptions 

 Number of executions <= nkCc * (n+c)!  

                                         = O((n2k)c * n!) 

 Exponential in n and c, but not in k! 

x = 1; 

  … 

  … 

  … 

  … 

x = 1; 

  … 

  … 
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  … 

x = k; 

x = 1; 

  … 

  … 

  … 

  … 

  … 

x = k; 

x = 1; 

  … 

  … 

  … 

  … 

  …   

x = k; 

  … 

  …   

x = k; 

• Choose c preemption points 

• Permute n+c atomic blocks 

Thread 1 Thread 2 



Property 2: Simple Error Traces 

 Finds smallest number of preemptions to the 
error 

 Number of preemptions better metric of error 
complexity than execution length 



Property 3: Coverage Metric 

 If search terminates with preemption-bound of 

c, then any remaining error must require at 

least c+1 preemptions 

 Intuitive estimate for 

 The complexity of the bugs remaining in the 

program 

 The chance of their occurrence in practice 



Property 4: Many Bugs with Few Preemptions 

Program kLOC Threads Preemptions Bugs 

Work-Stealing 

Queue 
1.3 3 2 3 

CDS 6.2 3 2 1 

CCR 9.3 3 2 2 

ConcRT 16.5 4 3 4 

Dryad 18.1 25 2 7 

APE 18.9 4 2 4 

STM 20.2 2 2 2 

PLINQ 23.8 8 2 1 

TPL 24.1 8 2 9 



Coverage vs Preemption-Bound 



Sequentialization of 

Concurrent Programs 



Concurrent Using Sequential 

 Transform context bounded analysis of 

concurrent programs into analysis of sequential 

programs 

 KISS [Qadeer, Wu, PLDI ‘04] 

 Only up to 2 context switches 

 [Lal, Reps, CAV ‘08], [La Torre, Madhusudan, 

Parlato, CAV ‘09] 

 More general transformations, N context switches 

 Applied only on small, manually constructed 

Boolean programs 



Simple Translation Example 

 Translation of one concurrent trace 

 Two threads: Thread1, Thread2 

 One shared variable: g 

 3 context switches, 4 execution segments (or 
contexts) 

 Main idea [Lal, Reps, CAV ’08] 
 Avoid storing local state 

 Introduce unconstrained symbolic “prophecy” 
values instead of still unavailable “future” values 

 Constrain them when “future” values become 
available 
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Lal-Reps Translation 

T1 || T2 

assert F 

INIT; 

L1: T1
s; 

L2: T2
s; 

L3: END; 

assert F 

int g1, g2,…gN, v2,…vN; 

int k := 1; 

assume (g2 = v2 && g3 = v3 ... gN = vN); 

st   switch(k): 

 case 1:  Schedule; st[g1/g]; 

 case 2:  Schedule; st[g2/g]; 

… 

assume (g1 = v2 && g2 = v3 …); 

Schedule 

if (k <= N) {if (*) k++;} 

else {k := 1; goto Li+1}; 

 N contexts per thread, shared variable g 



Field Abstraction Example 

 Before 

tmp = x->f; 

tmp = nondet(); 

tmp = x->f; 

tmp = x->g; 

y->g = tmp; 

 Abstraction… 

 Fields = {f,g} 

 Tracked fields = {f} 

 

tmp = x->g; 

y->g = tmp; 



Field Abstraction CEGAR 

 How to discover tracked fields automatically? 

 Algorithm based on CounterExample Guided 

Abstraction Refinement (CEGAR) framework 



A = Abstract(P, trackedFields) 

Check(A) 

trackedFields = {} 

Real 

Error? 

Analyze counterexample 

Add new fields to trackedFields 

No 

Counterexample 

Yes 

Return error trace 

Done 
Checked 



Experimental Results 

 Prototype implementation: STORM 

 4 Windows Device Drivers 

 Harness 

 Creates driver request that gets processed 

concurrently by multiple routines 

 Dispatch | Cancellation 

 Dispatch | Cancellation | Completion 

 Dispatch | Cancellation | Completion | DPC 

 Checked property 

 Driver request cannot be used after it has been 

completed (i.e. use after free) 



Driver kLOC #T Routine 1 2 3 4 5 

usbsamp 

Bug found! 
4 3 

read 17.9 37.7 65.8 66.8 85.2 

write 17.8 48.8 52.3 74.3 109.7 

ioctl 4.4 5.0 5.1 5.3 5.4 

usbsamp_fix 4 3 

read 16.9 28.2 38.6 46.7 47.5 

write 18.1 32.2 46.9 52.5 63.6 

ioctl 4.8 4.7 5.1 5.1 5.2 

mqueue 14 4 

read 62.1 161.5 236.2 173.0 212.4 

write 48.6 113.4 171.2 177.4 192.3 

ioctl 120.6 198.6 204.7 176.1 199.9 

daytona 22 2 ioctl 3.4 3.8 4.2 4.5 5.6 

serial 32 3 
read 36.5 95.4 103.4 240.5 281.4 

write 37.3 164.3 100.8 233.0 649.8 

 Manually provided tracked fields 

Varying Number of Contexts N 



Driver Routine #Fields 

Total 

#TFieds 

Manual 

#TFields 

CEGAR 

#CEGAR 

Iterations 

Time (s) 

daytona ioctl 53 3 3 3 244.3 

mqueue 

read 

72 7 

9 9 3446.3 

write 8 8 3010.0 

ioctl 9 9 3635.6 

usbsamp_fix 

read 

113 1 

3 3 4382.4 

write 4 4 2079.2 

ioctl 0 0 21.7 

serial 
read 

214 5 
5 5 3013.7 

write 4 3 1729.4 

 N=2 

Field Abstraction CEGAR 



Bug Found (usbsamp) 

 Sample driver in WinDDK 

 Example of how to write device drivers 

 Copy-pasted by driver vendors 

 Checked using existing tools 

 Bug confirmed and fixed 

 Requires 3 context switches 
 SLAM (SDV) – checks sequential code 

 KISS – only up to 2 context switches 

 Bug could not be found by other tools 



Bug Found 

ReadRoutine(req) { 

  ... 

  WdfRequestMarkCancelable( 

    req, CancelRoutine); 

  ... 

  WdfRequestComplete(req); 

  ... 

} 

CancelRoutine(req) { 

  assume (CancelRoutineSet 

&& !reqCompleted); 

  ... 

  GetRequestContext(req); 

  ... 

} 

Thread1 

Dispatch Routine 

Thread2 

Cancellation Routine 


