
Lecture 14

Concolic Execution

Zvonimir Rakamarić
University of Utah

CS 5110/6110 – Rigorous System Design | Spring 2016

Feb-23

Last Time

 Drawbacks of concrete testing

 Symbolic execution

 Solutions for the path explosion problem

 Structural abstraction

 Compositional symbolic execution

Symbolic Execution

 Key idea: execution of programs using

symbolic input values instead of concrete data

 Concrete vs symbolic

 Concrete execution

 Program takes only one path determined by input

values

 Symbolic execution

 Program can take any feasible path – coverage!

Symbolic Program State

 Symbolic values of program variables

 Path condition (PC)

 Logical formula over symbolic inputs

 Accumulates constraints that inputs have to satisfy

for the particular path to be executed

 If a path is feasible its PC is satisfiable

 Program location

Symbolic Execution Tree

 Characterizes execution paths constructed

during symbolic execution

 Nodes are symbolic program states

 Edges are labeled with program transitions

Example

1) int x, y;

2) if (x > y) {

3) x = x + y;

4) y = x – y;

5) x = x – y;

6) if (x > y)

7) assert false;

8) }

x:X, y:Y
PC:true

x:X, y:Y
PC:X>Y

x:X, y:Y
PC: X<=Y

x:X+Y, y:Y
PC:X>Y

x:X+Y, y:X
PC:X>Y

x:Y, y:X
PC:X>Y

x:Y, y:X
PC:X>Y Æ Y>X

x:Y, y:X
PC:X>Y Æ Y<=X

true

true false

false

SAT

SAT UNSAT

SAT

Further Limitations of Symbolic Execution

 Limited by the power of constraint solver

 Cannot handle non-linear and very complex

constraints

 Inherently white-box technique

 Source code (or equivalent) is required for precise

symbolic execution

 Modeling libraries is a huge problem

This Time

 Combining concrete and symbolic execution

 Many names referring to the same thing:

 DART (directed automated random testing)

 Concolic (concrete + symbolic) execution

 Dynamic symbolic execution

Concolic Execution

 Combination of concrete and symbolic

execution to overcome the two weaknesses of

classic symbolic execution

 Algorithm

 Execute program concretely

 Collect the symbolic path condition along the way

 Negate a constraint on the path condition after the

run and solve it to get a model

 Execute again with the newly found concrete input

values

Simple Example I

void foo(int x, int y) {

 z = 2*y;

 if (z == x) {

 if (x > y+10) {

 assert false;

 }

 }

}

Simple Example II

void foo(int x, int y) {

 z = double(y); // no source or complex

 if (z == x) {

 if (x > y+10) {

 assert false;

 }

 }

}

High-Level Picture

T F

T T

T

T

F

F

F

F

F

F

T

T

High-Level Picture

T F

T T

T

T

F

F

F

F

F

F

T

T

High-Level Picture

T F

T T

T

T

F

F

F

F

F

F

T

T

Concolic Covering Middle Ground

Concrete

+ Complex
programs

+ Binaries

+ Scalable

- Less coverage

+ No false
positives

Concolic

+ Complex
programs

+ Binaries

+/- Scalable

+ High coverage

+ No false
positives

Symbolic

- Simple
programs

- Source code

- Not scalable

+ High coverage

- False positives

Recent Success Stories

 SAGE

 Microsoft’s internal tool for finding security bugs

 White-box fuzzing

 Concolic execution for finding bugs in file parsers (jpeg,

docx, ppt,…)

 Last line of defense

 Big clusters continuously running SAGE

 KLEE

 Open source concolic executor

 Runs on top of LLVM

 Has found lots of problems in open-source software

