
Lecture 12

Symbolic Execution

Zvonimir Rakamarić
University of Utah

CS 5110/6110 – Rigorous System Design | Spring 2016

Feb-16

Symbolic Testing

 Symbolic execution

 Concolic execution

Past and Present of Symbolic Testing

 Introduced in 1976 by James King from IBM

T.J. Watson Research Center

 Implemented in EFFIGY – symbolic execution for a

PL/I-like language

 Still very active area of research

 SAGE, Pex [MSR]

 KLEE [Stanford]

 JDart [NASA, CMU, Utah]

 BitScope [Berkeley]

 CUTE [UIUC]

 Calysto [UBC]

 Saturn [Stanford]

Program Paths

 Program path refers to a path in the control-

flow graph of the program

 Program path is feasible if there exists an input

to the program that “covers” the path

 When the program is executed with this input, the

path is taken

 Program path is infeasible if there exists no

input that covers the path

Infeasible Paths

 Infeasible path does not imply dead code

 Dead code implies infeasible path

 Example:
 if (x > 0) {…}

 else {…}

 …

 if (x > 10) {…}

 else {…}

 …

 if (x < -10) {…}

 else {…}

Traditional Testing

 Real software has lots of infeasible paths

 Traditional testing does not scale when there is

a large number of infeasible paths to the target

location that needs to be covered

Symbolic Execution

 Key idea: execution of programs using

symbolic input values instead of concrete data

 Concrete vs symbolic

 Concrete execution

 Program takes only one path determined by input

values

 Symbolic execution

 Program can (in theory) take any feasible path

 Limited by the power of constraint solver

 Scalability issues when faced with large (exponential)

number of paths – path explosion

Symbolic Program State

 Symbolic values of program variables

 Path condition (PC)

 Logical formula over symbolic inputs

 Accumulates constraints that inputs have to satisfy

for the particular path to be executed

 If a path is feasible its PC is satisfiable

 Program location

Symbolic Execution Tree

 Characterizes execution paths constructed

during symbolic execution

 Nodes are symbolic program states

 Edges are labeled with program transitions

Example I

1) int x, y;

2) if (x > y) {

3) x = x + y;

4) y = x – y;

5) x = x – y;

6) if (x > y)

7) assert false;

8) }

Concrete Execution

 x = 4, y = 3

Constructed Symbolic Execution Tree I

Example II

int foo(int a, int b) {
 int k = a – b;
 int t = a + b + 3;
 if (a % 2 == 0) {
 a = b++;
 if (t > 0)
 k = t – 2;
 }
 if (a + 6 > k)
 b = 5;
 if (t + a + b == 20)
 assert false;
 return t + a + b;
}

Constructed Symbolic Execution Tree II

Path Explosion Problem I

int g1, g2;

int init(int x) {

 ... // Lots of paths

}

bool flip(int ∗data) {

 if (∗data < 0) {

 ∗data = −(∗data);

 return true;

 }

 return false;

}

void scale() {

 g2 = init(g1);

 if (flip(&g2)) {

 if (g2 == 0)

 assert false;

 g1 = g1/g2;

 }

}

Solution: Structural Abstraction

 Key idea: abstract function calls by replacing

them with uninterpreted functions

 Algorithm

 Replace function calls with uninterpreted functions

 If error is not reachable

 Done

 If error is reachable

 Analyze error path

 Perform on-demand abstraction refinement by replacing

an uninterpreted function with the actual callee

Path Explosion Problem I

int g1, g2;

int init(int x) {

 ... // Lots of paths

}

bool flip(int ∗data) {

 if (∗data < 0) {

 ∗data = −(∗data);

 return true;

 }

 return false;

}

void scale() {

 g2 = init(g1);

 if (flip(&g2)) {

 if (g2 == 0)

 assert false;

 g1 = g1/g2;

 }

}

Path Explosion Problem II

int abs(int x) {

 if (x >= 0) return x;

 else return –x;

}

int sumAbs(int[] a) {

 int sum = 0;

 for (int i = 0; i < 50; i++)

 sum += abs(a[i]);

 if (sum == 13)

 assert false;

 return sum;

}

Solution: Compositional Symb. Execution

 Key idea: compute function summaries to be

used at all call sites of the function

 Function summary encodes path conditions and

return values of all paths through the function

 Potential solution to path explosion problem

 Only as good as computed function summaries

 Algorithm

 Symbolically execute all paths of callee function

and compute a function summary

 When symbolically executing paths in the caller

function, reuse the summary of the callee instead

of repeatedly executing paths in the callee

Path Explosion Problem II

int abs(int x) {

 if (x >= 0) return x;

 else return –x;

}

int sumAbs(int[] a) {

 int sum = 0;

 for (int i = 0; i < 50; i++)

 sum += abs(a[i]);

 if (sum == 13)

 assert false;

 return sum;

}

Summary of abs:

This is a stupid summary

(causes branching in Z3

when unsat).

forall x. (x¸0 Æ abs(x)=x) Ç

(x < 0 Æ abs(x)=-x)

This is a better summary:

forall x. (abs(x)>=0)

Path condition leading to error:

abs(a[0]) + abs(a[1]) +…+
abs(a[49]) = 13 Æ

(forall x. (x¸0 Æ abs(x)=x) Ç

(x < 0 Æ abs(x)=-x))

Further Reading

 J.C. King: Symbolic Execution and Program

Testing, CACM 1976

 D. Babic, A.J. Hu: Structural Abstraction of

Software Verification Conditions, CAV 2007

 C. Pasareanu, W. Visser: A Survey of New

Trends in Symbolic Execution for Software

Testing and Analysis, STTT 2009

 N. Sinha, N. Singhania, S. Chandra, M.

Sridharan: Alternate and Learn: Finding

Witnesses without Looking All over, CAV 2012

Next Time

 Concolic (concrete+symbolic) execution

