
Lecture 12

Symbolic Execution

Zvonimir Rakamarić
University of Utah

CS 5110/6110 – Rigorous System Design | Spring 2016

Feb-16

Symbolic Testing

 Symbolic execution

 Concolic execution

Past and Present of Symbolic Testing

 Introduced in 1976 by James King from IBM

T.J. Watson Research Center

 Implemented in EFFIGY – symbolic execution for a

PL/I-like language

 Still very active area of research

 SAGE, Pex [MSR]

 KLEE [Stanford]

 JDart [NASA, CMU, Utah]

 BitScope [Berkeley]

 CUTE [UIUC]

 Calysto [UBC]

 Saturn [Stanford]

Program Paths

 Program path refers to a path in the control-

flow graph of the program

 Program path is feasible if there exists an input

to the program that “covers” the path

 When the program is executed with this input, the

path is taken

 Program path is infeasible if there exists no

input that covers the path

Infeasible Paths

 Infeasible path does not imply dead code

 Dead code implies infeasible path

 Example:
 if (x > 0) {…}

 else {…}

 …

 if (x > 10) {…}

 else {…}

 …

 if (x < -10) {…}

 else {…}

Traditional Testing

 Real software has lots of infeasible paths

 Traditional testing does not scale when there is

a large number of infeasible paths to the target

location that needs to be covered

Symbolic Execution

 Key idea: execution of programs using

symbolic input values instead of concrete data

 Concrete vs symbolic

 Concrete execution

 Program takes only one path determined by input

values

 Symbolic execution

 Program can (in theory) take any feasible path

 Limited by the power of constraint solver

 Scalability issues when faced with large (exponential)

number of paths – path explosion

Symbolic Program State

 Symbolic values of program variables

 Path condition (PC)

 Logical formula over symbolic inputs

 Accumulates constraints that inputs have to satisfy

for the particular path to be executed

 If a path is feasible its PC is satisfiable

 Program location

Symbolic Execution Tree

 Characterizes execution paths constructed

during symbolic execution

 Nodes are symbolic program states

 Edges are labeled with program transitions

Example I

1) int x, y;

2) if (x > y) {

3) x = x + y;

4) y = x – y;

5) x = x – y;

6) if (x > y)

7) assert false;

8) }

Concrete Execution

 x = 4, y = 3

Constructed Symbolic Execution Tree I

Example II

int foo(int a, int b) {
 int k = a – b;
 int t = a + b + 3;
 if (a % 2 == 0) {
 a = b++;
 if (t > 0)
 k = t – 2;
 }
 if (a + 6 > k)
 b = 5;
 if (t + a + b == 20)
 assert false;
 return t + a + b;
}

Constructed Symbolic Execution Tree II

Path Explosion Problem I

int g1, g2;

int init(int x) {

 ... // Lots of paths

}

bool flip(int ∗data) {

 if (∗data < 0) {

 ∗data = −(∗data);

 return true;

 }

 return false;

}

void scale() {

 g2 = init(g1);

 if (flip(&g2)) {

 if (g2 == 0)

 assert false;

 g1 = g1/g2;

 }

}

Solution: Structural Abstraction

 Key idea: abstract function calls by replacing

them with uninterpreted functions

 Algorithm

 Replace function calls with uninterpreted functions

 If error is not reachable

 Done

 If error is reachable

 Analyze error path

 Perform on-demand abstraction refinement by replacing

an uninterpreted function with the actual callee

Path Explosion Problem I

int g1, g2;

int init(int x) {

 ... // Lots of paths

}

bool flip(int ∗data) {

 if (∗data < 0) {

 ∗data = −(∗data);

 return true;

 }

 return false;

}

void scale() {

 g2 = init(g1);

 if (flip(&g2)) {

 if (g2 == 0)

 assert false;

 g1 = g1/g2;

 }

}

Path Explosion Problem II

int abs(int x) {

 if (x >= 0) return x;

 else return –x;

}

int sumAbs(int[] a) {

 int sum = 0;

 for (int i = 0; i < 50; i++)

 sum += abs(a[i]);

 if (sum == 13)

 assert false;

 return sum;

}

Solution: Compositional Symb. Execution

 Key idea: compute function summaries to be

used at all call sites of the function

 Function summary encodes path conditions and

return values of all paths through the function

 Potential solution to path explosion problem

 Only as good as computed function summaries

 Algorithm

 Symbolically execute all paths of callee function

and compute a function summary

 When symbolically executing paths in the caller

function, reuse the summary of the callee instead

of repeatedly executing paths in the callee

Path Explosion Problem II

int abs(int x) {

 if (x >= 0) return x;

 else return –x;

}

int sumAbs(int[] a) {

 int sum = 0;

 for (int i = 0; i < 50; i++)

 sum += abs(a[i]);

 if (sum == 13)

 assert false;

 return sum;

}

Summary of abs:

This is a stupid summary

(causes branching in Z3

when unsat).

forall x. (x¸0 Æ abs(x)=x) Ç

(x < 0 Æ abs(x)=-x)

This is a better summary:

forall x. (abs(x)>=0)

Path condition leading to error:

abs(a[0]) + abs(a[1]) +…+
abs(a[49]) = 13 Æ

(forall x. (x¸0 Æ abs(x)=x) Ç

(x < 0 Æ abs(x)=-x))

Further Reading

 J.C. King: Symbolic Execution and Program

Testing, CACM 1976

 D. Babic, A.J. Hu: Structural Abstraction of

Software Verification Conditions, CAV 2007

 C. Pasareanu, W. Visser: A Survey of New

Trends in Symbolic Execution for Software

Testing and Analysis, STTT 2009

 N. Sinha, N. Singhania, S. Chandra, M.

Sridharan: Alternate and Learn: Finding

Witnesses without Looking All over, CAV 2012

Next Time

 Concolic (concrete+symbolic) execution

