
Lecture 8

Verification Conditions II

Zvonimir Rakamarić
University of Utah

CS 5110/6110 – Rigorous System Design | Spring 2016

Feb-4

Announcements

 Graded homework 1

 Good job everyone!

 You have 1 week for submitting your regrading

request via email

 It is time your start thinking about projects

 Posted some ideas on canvas

 Try to tie it to your research or interests

 Talk to me in person

 Next week we’ll have a project brainstorming

session in class

Last Time

 Simple command language

 Basic verification condition generation

 Weakest preconditions

Simple Command Language

x := E

havoc x

assert P

assume P

S ; T [sequential composition]

S  T [choice statement]

Weakest Preconditions Cookbook

 wp(x := E, Q) = Q[E / x]

 wp(havoc x, Q) = (∀ x . Q)

 wp(assert P, Q) = P Æ Q

 wp(assume P, Q) = P  Q

 wp(S ; T, Q) = wp(S, wp(T, Q))

 wp(S  T, Q) = wp(S, Q) Æ wp(T, Q)

Checking Correctness with wp

{true}

wp(x := 1, x + 2 = 3) = 1 + 2 = 3 Æ true

x := 1;

wp(y := x + 2, y = 3) = x + 2 = 3 Æ true

y := x + 2;

wp(assert y = 3, true) = y = 3 Æ true

assert y = 3;

{true}

Check: true  1 + 2 = 3 Æ true

This Time

 If statements

 Design by contract

 Procedures

Structured if Statement

 Just a “syntactic sugar”:

 if E then S else T

 gets desugared into

 (assume E ; S)  (assume :E ; T)

Absolute Value Example

if (x >= 0) {

 abs_x := x;

} else {

 abs_x := -x;

}

assert abs_x >= 0;

Design by Contract

 Also called assume-guarantee reasoning

 Developers annotate software components with
contracts (formal specifications)
 Document developer’s intent

 Complex system verification broken down into
compositional verification of each component

 Typical contracts
 Annotations on procedure boundaries

 Preconditions

 Postconditions

 Annotations on loop boundaries
 Loop invariants

Design by Contract cont.

 First used in Eiffel [Bertrand Meyer]

 Native support:

 Eiffel, Racket, SPARK Ada, Spec#, Dafny,…

 Third-party support:

 Code Contracts project for .NET

 Java Modeling Language

 Contracts for Python

 contracts.ruby

 …

 Runtime or static checking of contracts

Code Contracts Example

static int BinarySearch(int[] array, int value)

{

 Contract.Requires(array != null);

 …

}

Spec# Example

static int BinarySearch(int[] a, int key)

requires forall{int i in (0: a.Length), int j in

(i: a.Length); a[i] <= a[j]};

ensures 0 <= result ==> a[result] == key;

ensures result < 0 ==> forall{int i in (0:

a.Length); a[i] != key};

{

 …

}

Java Modeling Languge (JML) Example

class BankingExample {

 public static final int MAX_BAL = 1000;

 private int balance;

 //@ invariant balance >= 0 && balance <= MAX_BAL;

 //@ ensures balance == 0;

 public BankingExample() { this.balance = 0; }

 //@ requires 0 < amount && amount+balance < MAX_BAL;

 //@ ensures balance == \old(balance) + amount;

public void credit(int amount) {

 this.balance += amount;

 }

}

Assume-Guarantee Reasoning

 Example

 foo() {…}

 bar() {…foo();…}

 How to verify/check bar?

Assume-Guarantee Reasoning cont.

 Solution 1

 Inline foo

 Solution 2

 Write contract/specification P of foo

 Assume P when checking bar

 bar() {…assume P;…}

 Guarantee P when checking foo

 foo() {…assert P;}

 Pros/cons?

Procedure

 Procedure is a complex user-defined command

 procedure M(x,y,z) returns (r,s,t)

 requires P

 ensures Q

 {S}

 requires is a precondition

 Predicate P has to hold at procedure entry

 ensures is a postcondition

 Predicate Q has to hold at procedure exit

 S is procedure body (command)

 Note: assume procedures have no side-effects

Procedure Example

procedure abs(x) returns (abs_x)

requires -1000 < x && x < 1000

ensures abs_x >= 0

{

 if (x >= 0) {

 abs_x := x;

 } else {

 abs_x := -x;

 }

}

Desugaring Procedure Call

 procedure M(x,y,z) returns (r,s,t)

 requires P

 ensures Q

 {S}

 call a,b,c := M(E,F,G)

desugared into:

 x’ := E; y’ := F; z’ := G;

 assert P’;

 assume Q’;

 a := r’; b := s’; c := t’;

where:

•x’,y’,z’,r’,s’,t’ are fresh variables

•P’ is P with x’,y’,z’ for x,y,z

•Q’ is Q with x’,y’,z’,r’,s’,t’ for

x,y,z,r,s,t

Desugaring Call Example

procedure abs(x) returns (abs_x)

requires -1000 < x && x < 1000

ensures abs_x >= 0

{

 if (x >= 0) {

 abs_x := x;

 } else {

 abs_x := -x;

 }

}

call a := abs(b);

assert a >= 0;

Desugaring Call Example

Desugaring Procedure Implementation

 procedure M(x,y,z) returns (r,s,t)

 requires P

 ensures Q

 {S}

 Implementation is correct if this is correct:

 assume P;

 S;

 assert Q;

Desugaring Implementation Example

procedure abs(x) returns (abs_x)

requires -1000 < x && x < 1000

ensures abs_x >= 0

{

 if (x >= 0) {

 abs_x := x;

 } else {

 abs_x := -x;

 }

}

Desugaring Implementation Example

