Lecture 6
 First-Order Theories II

Zvonimir Rakamarić University of Utah

Last Time

- First-order theories
- Theory of equality
- Arithmetic over integers and natural numbers
, Peano arithmetic
- Undecidable
- Presburger arithmetic
- No multiplication between two variables
- Decidable

Theory of integers

- Same expressiveness as Presburger arithmetic

This Time

- Theory of reals
- Theory of rationals
- Theory of arrays
- Exercises with SMT solver Z3

Discussion

First-order logic

$$
\forall x . \exists y . \mathrm{p}(\mathrm{x}, \mathrm{y}) \rightarrow \neg \mathrm{p}(\mathrm{y}, \mathrm{x})
$$

Is this formula satisfiable?
Is this formula valid?

Theory of integers

$$
\forall x . \exists y . x>y \rightarrow \neg(y>x)
$$

Is this formula satisfiable?
Is this formula valid?

Theory of Reals $T_{\mathbb{R}}$ and Rationals $T_{\mathbb{Q}}$
 $\Sigma_{\mathbb{R}}:\left\{0,1,+,-,{ }^{*},=, \geq\right\}$
 with multiplication

$\Sigma_{\mathbb{Q}}:\{0,1,+,-,=, \geq\}$
without multiplication

Decidability of $T_{\mathbb{R}}$ and $T_{\mathbb{Q}}$

- Both are decidable
- High time complexity
- Quantifier-free fragment of $T_{\mathbb{Q}}$ is efficiently decidable

Theory of Arrays T_{A}

$\Sigma_{A}:\{$ select, store, $=\}$
where

- select($a, i)$ is a binary function:
, read array a at index i
store(a,i,v) is a ternary function:
- write value v to index i of array a

Axioms of T_{A}

1. $\forall a, i, j . i=j \rightarrow \operatorname{select}(a, i)=\operatorname{select}(a, j)$
(array congruence)
2. $\forall a, v, i, j . i=j \rightarrow \operatorname{select}(\operatorname{store}(a, i, v), j)=v$ (select-store 1)
3. $\forall a, v, i, j . i \neq j \rightarrow \operatorname{select}(\operatorname{store}(a, i, v), j)=\operatorname{select}(a, j)$ (select-store 2)

Note about T_{A}

- Equality (=) is only defined for array elements...
- Example:
$\operatorname{select}(a, i)=e \rightarrow \forall j$. select($\operatorname{store}(a, i, e), j)=\operatorname{select}(a, j)$ is T_{A}-valid
...and not for whole arrays
- Example:
$\operatorname{select}(a, i)=e \rightarrow \operatorname{store}(a, i, e)=a$
is not T_{A}-valid

Decidability of T_{A}

- T_{A} is undecidable
- Quantifier-free fragment of T_{A} is decidable

Theory of Arrays with Extensionality $T_{A}=$

 Signature and axioms of $T_{A}=$ are the same as T_{A}, with one additional axiom:$\forall a, b .(\forall i . \operatorname{select}(a, i)=\operatorname{select}(b, i)) \leftrightarrow a=b$
(extensionality)
$T_{A}=$-valid example
$\operatorname{select}(a, i)=e \rightarrow \operatorname{store}(a, i, e)=a$

Decidability of $T_{A}=$

- $T_{A}=$ is undecidable
- Quantifier-free fragment of $T_{A}=$ is decidable

Summary of Decidability Results

	Theory	Quantifiers Decidable	QFF Decidable
T_{E}	Equality	NO	YES
$T_{P A}$	Peano Arithmetic	NO	NO
$T_{\mathbb{N}}$	Presburger Arithmetic	YES	YES
$T_{\mathbb{Z}}$	Linear Integer Arithmetic	YES	YES
$T_{\mathbb{R}}$	Real Arithmetic	YES	YES
$T_{\mathbb{Q}}$	Linear Rationals	YES	YES
T_{A}	Arrays	NO	YES

Summary of Complexity Results

	Theory	Quantifiers	QF Conjunctive
PL Propositional Logic	NP-complete	$\mathrm{O}(\mathrm{n})$	
T_{E} Equality	-	$\mathrm{O}(\mathrm{n}$ log $n)$	
$T_{\mathbb{N}}$	Presburger Arithmetic	$\mathrm{O}\left(2^{\wedge} 2^{\wedge} 2^{\wedge}(\mathrm{kn})\right)$	NP-complete
$T_{\mathbb{Z}}$ Linear Integer Arithmetic	$\mathrm{O}\left(2^{\wedge} 2^{\wedge} 2^{\wedge}(\mathrm{kn})\right)$	NP-complete	
$T_{\mathbb{R}}$	Real Arithmetic	$\mathrm{O}\left(2^{\wedge} 2^{\wedge}(\mathrm{kn})\right)$	$\mathrm{O}\left(2^{\wedge} 2^{\wedge}(\mathrm{kn})\right)$
$T_{\mathbb{Q}}$	Linear Rationals	$\mathrm{O}\left(2^{\wedge} 2^{\wedge}(\mathrm{kn})\right)$	PTIME
T_{A}	Arrays	-	NP-complete

n - input formula size; k - some positive integer

Z3 SMT Solver

- http://rise4fun.com/z3/
- Input format is an extension of SMT-LIB standard
Commands
- declare-const - declare a constant of a given type
- declare-fun - declare a function of a given type
b assert - add a formula to Z3's internal stack
b check-sat - determine if formulas currently on stack are satisfiable
- get-model - retrieve an interpretation
, exit

Linear Integer Arith. Example 1

$$
x \leq y \wedge z=x+1 \rightarrow z \leq y
$$

Linear Integer Arith. Example 2

$$
x \leq y \wedge z=x-1 \rightarrow z \leq y
$$

Linear Integer Arith. Example 3

$$
1 \leq x \wedge x+y \leq 3 \wedge 1 \leq y \rightarrow x=1 \vee x=2
$$

Dog, Cat, and Mouse Puzzle (from Z3 page)

- Puzzle
- Spend exactly $\$ 100$ and buy exactly 100 animals.
- Dogs cost $\$ 15$, cats cost $\$ 1$, and mice cost 25 cents each.
- You have to buy at least one of each.
- How many of each should you buy?
- Use linear integer arithmetic
- Hint: turn dollar amounts into cents

Scheduling Example

	Machine I	Machine 2
Job 1	2	1
Job 2	3	1
Job 3	2	3

- Table gives time units required to process Job x on Machine y
- For a job, complete a phase on Machine 1 before starting the next on Machine 2
- Find using Z3 whether jobs can be scheduled in T time units
- Try T=6, T=7, T=8

