Lecture 6 First-Order Theories II

Zvonimir Rakamarić University of Utah

slides acknowledgements: Zohar Manna

Last Time

- First-order theories
- Theory of equality
- Arithmetic over integers and natural numbers
 - Peano arithmetic
 - Undecidable
 - Presburger arithmetic
 - No multiplication between two variables
 - Decidable
 - Theory of integers
 - Same expressiveness as Presburger arithmetic

This Time

- Theory of reals
- Theory of rationals
- Theory of arrays
- Exercises with SMT solver Z3

Discussion

First-order logic

$$\forall x. \exists y. p(x, y) \rightarrow \neg p(y, x)$$

Is this formula satisfiable?

Is this formula valid?

Theory of integers

$$\forall x. \exists y. x > y \rightarrow \neg(y > x)$$

Is this formula satisfiable?

Is this formula valid?

Theory of Reals $T_{\mathbb{R}}$ and Rationals $T_{\mathbb{R}}$

$$\Sigma_{\mathbb{R}}$$
: $\{0, 1, +, -, *, =, \geq\}$ with multiplication

$$\Sigma_{\mathbb{Q}}$$
: {0, 1, +, -, =, \geq }

without multiplication

Decidability of $T_{\mathbb{R}}$ and $T_{\mathbb{Q}}$

- Both are decidable
 - High time complexity
- Quantifier-free fragment of T_Q is efficiently decidable

Theory of Arrays T_A

 Σ_A : {select, store, =} where

- select(a,i) is a binary function:
 - read array a at index i
- store(a,i,v) is a ternary function:
 - write value v to index i of array a

Axioms of T_A

- 1. $\forall a, i, j. \ i = j \rightarrow select(a, i) = select(a, j)$ (array congruence)
- 2. $\forall a, v, i, j. \ i = j \rightarrow select(store(a, i, v), j) = v$ (select-store 1)
- 3. $\forall a, v, i, j. \ i \neq j \rightarrow select(store(a, i, v), j) = select(a, j)$ (select-store 2)

Note about T_A

- Equality (=) is only defined for array elements...
 - Example:

```
select(a,i)=e \rightarrow \forall j. \ select(store(a,i,e),j)=select(a,j) is T_A-valid
```

- ...and not for whole arrays
 - Example:

```
select(a,i)=e \rightarrow store(a,i,e)=a is not T_A-valid
```

Decidability of T_A

- $ightharpoonup T_A$ is undecidable
- Quantifier-free fragment of T_A is decidable

Theory of Arrays with Extensionality T_A =

Signature and axioms of T_A are the same as T_A , with one additional axiom:

```
\forall a,b. \ (\forall i. \ select(a,i) = select(b,i)) \leftrightarrow a = b (extensionality)
```

► T_A =-valid example $select(a,i)=e \rightarrow store(a,i,e)=a$

Decidability of $T_A^=$

- T_A is undecidable
- ▶ Quantifier-free fragment of T_A is decidable

Summary of Decidability Results

Theory		Quantifiers Decidable	QFF Decidable
T _E	Equality	NO	YES
T_{PA}	Peano Arithmetic	NO	NO
$T_{\mathbb{N}}$	Presburger Arithmetic	YES	YES
$\mathcal{T}_{\mathbb{Z}}$	Linear Integer Arithmetic	YES	YES
$\mathcal{T}_{\mathbb{R}}$	Real Arithmetic	YES	YES
$\mathcal{T}_{\mathbb{Q}}$	Linear Rationals	YES	YES
T_{A}	Arrays	NO	YES

Summary of Complexity Results

Theory		Quantifiers	QF Conjunctive
PL	Propositional Logic	NP-complete	O(n)
T_{E}	Equality	_	$O(n \log n)$
$T_{\mathbb{N}}$	Presburger Arithmetic	O(2^2^2(kn))	NP-complete
$ extstyle ag{Z}$	Linear Integer Arithmetic	O(2^2^2(kn))	NP-complete
$\mathcal{T}_{\mathbb{R}}$	Real Arithmetic	O(2^2^(kn))	O(2^2^(kn))
$\mathcal{T}_{\mathbb{Q}}$	Linear Rationals	O(2^2^(kn))	PTIME
T_{A}	Arrays	_	NP-complete

n – input formula size; k – some positive integer

Z3 SMT Solver

- http://rise4fun.com/z3/
- Input format is an extension of SMT-LIB standard
- Commands
 - declare-const declare a constant of a given
 type
 - declare-fun declare a function of a given type
 - assert add a formula to Z3's internal stack
 - check-sat determine if formulas currently on stack are satisfiable
 - get-model retrieve an interpretation
 - exit

Linear Integer Arith. Example 1

$$x \leq y \land z = x + 1 \rightarrow z \leq y$$

Linear Integer Arith. Example 2

$$x \leq y \land z = x - 1 \rightarrow z \leq y$$

Linear Integer Arith. Example 3

$$1 \leq x \land x + y \leq 3 \land 1 \leq y \rightarrow x = 1 \lor x = 2$$

Dog, Cat, and Mouse Puzzle (from Z3 page)

- Puzzle
 - Spend exactly \$100 and buy exactly 100 animals.
 - Dogs cost \$15, cats cost \$1, and mice cost 25 cents each.
 - You have to buy at least one of each.
 - How many of each should you buy?
- Use linear integer arithmetic
 - Hint: turn dollar amounts into cents

Scheduling Example

	Machine I	Machine 2
Job I	2	1
Job 2	3	Ī
Job 3	2	3

- Table gives time units required to process Job x on Machine y
- For a job, complete a phase on Machine 1 before starting the next on Machine 2
- Find using Z3 whether jobs can be scheduled in T time units
 - ▶ Try T=6, T=7, T=8