Lecture 5 First-Order Theories I

Zvonimir Rakamarić University of Utah

Announcements

- Homework 1 is due tomorrow

Last Time

- First-order logic
- Syntax and semantics
- Quantifiers
, Undecidable
- Proving validity with semantic argument method

This Time

- First-order theories
- Reading: Chapter 3

First-Order Theories

- Software manipulates structures
- Numbers, arrays, lists, bitvectors,...
- Software (and hardware) verification
- Reasoning about such structures
- First-order theories
- Formalize structures to enable reasoning about them
- Validity is sometimes decidable

Definition

- First-order theory T defined by:
- Signature Σ_{T} - set of constant, function, and predicate symbols
- Have no meaning
- Axioms A_{T} - set of closed (no free variables) Σ_{T}-formulae
- Provide meaning for symbols of Σ_{T}

Σ_{T}-formula

- Σ_{T}-formula is a formula constructed of:
- Constants, functions, and predicate symbols from Σ_{T}
- Variables, logical connectives, and quantifiers

T-interpretation

- Interpretation / is T-interpretation if it satisfies all axioms A_{T} of T :
$I \vDash A$ for every $A \in A_{T}$

Satisfiability and Validity

- Σ_{T}-formula F is satisfiable in theory $T(T$ satisfiable) if there is a T-interpretation / that satisfies F
- Σ_{T}-formula F is valid in theory T (T-valid, $T \vDash F$)
if every T-interpretation / satisfies F
, Theory T consists of all closed T-valid formulae
- Two Σ_{T}-formulae F_{1} and F_{2} are equivalent in T (T-equivalent) if $T \vDash F_{1} \leftrightarrow F_{2}$

Fragment of a Theory

- Fragment of theory T is a syntactically restricted subset of formulae of the theory
- Example:

Quantifier-free fragment of theory T is the set of formulae without quantifiers that are valid in T

- Often decidable fragments for undecidable theories

Decidability

- Theory T is decidable if T-validity is decidable for every Σ_{T}-formula F
There is an algorithm that always terminates with "yes" if F is T-valid, and "no" if F is T-invalid
- Fragment of T is decidable if T-validity is decidable for every Σ_{T}-formula F in the fragment

Common First-Order Theories

- Theory of equality
- Peano arithmetic
- Presburger arithmetic
- Linear integer arithmetic
- Reals
- Rationals
- Arrays
- Recursive data structures

Theory of Equality T_{E}

Signature

$$
\Sigma_{E}:\{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots\}
$$

consists of:

* a binary predicate "=" interpreted using provided axioms
- constant, function, and predicate symbols

Axioms of T_{E}

1. $\forall X \cdot X=X$
2. $\forall x, y . x=y \rightarrow y=x$
3. $\forall x, y, z . ~ x=y \wedge y=z \rightarrow x=z$
4. for each positive int. n and n -ary function symbol f,

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} .\left(\bigwedge_{=1}^{n} x_{i}=y_{i}\right) \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)
$$

(function congruence)
5. for each positive int. n and n -ary predicate symbol p,

$$
\begin{aligned}
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} .\left(\widehat{i=1}_{n} x_{i}=y_{i}\right) \rightarrow & \left(p\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots, y_{n}\right)\right) \\
& \text { (predicate congruence) }
\end{aligned}
$$

Decidability of T_{E}

- Bad news
- T_{E} is undecidable
- Good news
, Quantifier-free fragment of T_{E} is decidable
, Very efficient algorithms

Z3 Example

$$
x=y \wedge y=z \rightarrow g(f(x), y)=g(f(z), x)
$$

Arithmetic: Natural Numbers and Integers

Natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$
Integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
Three theories:

- Peano arithmetic $T_{P A}$
- Natural numbers with addition (+), multiplication (*), equality (=)
- Presburger arithmetic $T_{\mathbb{N}}$
- Natural numbers with addition (+), equality (=)
- Theory of integers $T_{\mathbb{Z}}$
- Integers with addition (+), subtraction (-), comparison ($>$), equality ($=$), multiplication by constants

Peano Arithmetic $T_{P A}$
 $\Sigma_{P A}:\left\{0,1,+{ }^{*},=\right\}$

- $T_{P A}$-satisfiability and $T_{P A}$-validity are undecidable

Restrict the theory more

Presburger Arithmetic $T_{\mathbb{N}}$

$\Sigma_{\mathbb{N}}:\{0,1,+,=\} \quad$ no multiplication!

Axioms:

1. equality axioms for $=$
2. $\forall x \cdot \neg(x+1=0)$
3. $\forall x, y . x+1=y+1 \rightarrow x=y$
4. $F[0] \wedge(\forall x . F[x] \rightarrow F[x+1]) \rightarrow \forall x . F[x]$
5. $\forall x, x+0=x$
6. $\forall x, y \cdot x+(y+1)=(x+y)+1$
(zero)
(successor)
(induction)
(plus zero)
(plus successor)

Decidability of $T_{\mathbb{N}}$

- $T_{\mathbb{N}}$-satisfiability and $T_{\mathbb{N}}$-validity are decidable

Theory of Integers $T_{\mathbb{Z}}$

$\Sigma_{\mathbb{Z}}:\left\{\ldots,-2,-1,0,1,2, \ldots,-3^{*},-2^{*}, 2^{*}, 3^{*}, \ldots,+,-,=,>\right\}$
where
($. .,-2,-1,0,1,2, \ldots$ are constants
$\ldots,-3^{*},-2^{*}, 2^{*}, 3^{*}, \ldots$ are unary functions
(intended meaning: $2^{*} x$ is $x+x,-3^{*} x$ is $-x-x-x$)
।,,$+->,=$ have the usual meaning

- $T_{\mathbb{N}}$ and $T_{\mathbb{Z}}$ have the same expressiveness
- Every $\Sigma_{\mathbb{Z}}$-formula can be reduced to $\Sigma_{\mathbb{N}}$-formula
- Every $\Sigma_{\mathbb{N}}$-formula can be reduced to $\Sigma_{\mathbb{Z}}$-formula

Example of $T_{\mathbb{Z}}$ to $T_{\mathbb{N}}$ Reduction

Consider $\Sigma_{\mathbb{Z}}$-formula
$F_{0}: \forall w, x . \exists y, z . x+2^{*} y-z-13>-3^{*} w+5$
Introduce two variables v_{p} and v_{n} (range over natural numbers) for each variable v (range over integers) in F_{0} :
$F_{1}: \forall w_{p}, w_{n}, x_{p}, x_{n} . \exists y_{p}, y_{n}, z_{p}, z_{n}$.

$$
\left(x_{p}-x_{n}\right)+2^{*}\left(y_{p}-y_{n}\right)-\left(z_{p}-z_{n}\right)-13>-3^{*}\left(w_{p}-w_{n}\right)+5
$$

Eliminate - by moving to the other side of $>$:
$F_{2}: \forall w_{p}, w_{n}, x_{p}, x_{n} . \exists y_{p}, y_{n}, z_{p}, z_{n}$.

$$
x_{p}+2^{*} y_{p}+z_{n}+3^{*} w_{p}>x_{n}+2^{*} y_{n}+z_{p}+13+3^{*} w_{n}+5
$$

Example of $T_{\mathbb{Z}}$ to $T_{\mathbb{N}}$ Reduction cont.

Eliminate * and >:

$$
\begin{gathered}
F_{3}: \forall w_{p}, w_{n}, x_{p}, x_{n} \cdot \exists y_{p}, y_{n}, z_{p}, z_{n} \cdot \exists u \cdot \neg(u=0) \wedge \\
x_{p}+y_{p}+y_{p}+z_{n}+w_{p}+w_{p}+w_{p} \\
= \\
x_{n}+y_{n}+y_{n}+z_{p}+w_{n}+w_{n}+w_{n}+\mathrm{u} \\
\quad+1+1+1+1+1+1+1+1+1 \\
\quad+1+1+1+1+1+1+1+1+1
\end{gathered}
$$

- F_{3} is a $\Sigma_{\mathbb{N}}$-formula equisatisfiable to F_{0}

Example of $T_{\mathbb{N}}$ to $T_{\mathbb{Z}}$ Reduction

Consider $\Sigma_{\mathbb{N}}$-formula
$F: \forall x$. $\exists \mathrm{y} . x=y+1$
F is equisatisfiable to $\Sigma_{\mathbb{Z}}$-formula
$\forall x . x>-1 \rightarrow \exists y . y>-1 \wedge x=y+1$

Decidability of $T_{\mathbb{Z}}$

- $T_{\mathbb{Z}}$-satisfiability and $T_{\mathbb{Z}}$-validity are decidable

Z3 Example

$$
x>z \wedge y>=0 \rightarrow x+y>z
$$

Next Time

- More on first-order theories
- Arithmetic with rationals and reals
- Arrays
- Recursive data structures
- Complexities for theories

