CS 5110/6110 – Rigorous System Design | Spring 2016 Jan-26

Lecture 5 First-Order Theories I

Zvonimir Rakamarić University of Utah

slides acknowledgements: Zohar Manna

Announcements

Homework 1 is due tomorrow

Last Time

- First-order logic
 - Syntax and semantics
 - Quantifiers
 - Undecidable

Proving validity with semantic argument method

This Time

- First-order theories
- Reading: Chapter 3

First-Order Theories

- Software manipulates structures
 - Numbers, arrays, lists, bitvectors,...
- Software (and hardware) verification
 - Reasoning about such structures
- First-order theories
 - Formalize structures to enable reasoning about them
 - Validity is sometimes decidable

Definition

• First-order theory *T* defined by:

- Signature Σ_T set of constant, function, and predicate symbols
 - Have no meaning
- Axioms A_T set of closed (no free variables) Σ_T –formulae
 - \blacktriangleright Provide meaning for symbols of $\Sigma_{\mathcal{T}}$

$\Sigma_{\mathcal{T}}$ -formula

• Σ_{T} -formula is a formula constructed of:

- Constants, functions, and predicate symbols from Σ_T
- Variables, logical connectives, and quantifiers

T-interpretation

Interpretation *I* is *T*-interpretation if it satisfies all axioms A_T of *T*:

 $I \vDash A$ for every $A \in A_T$

Satisfiability and Validity

- Σ_T -formula *F* is satisfiable in theory *T*(*T*-satisfiable) if there is a *T*-interpretation *I* that satisfies *F*
- Σ_T -formula *F* is valid in theory *T*(*T*-valid, *T* |= *F*) if every *T*-interpretation *I* satisfies *F*
 - Theory T consists of all closed T-valid formulae
- Two Σ_T -formulae F_1 and F_2 are equivalent in T(*T*-equivalent) if $T \vDash F_1 \leftrightarrow F_2$

Fragment of a Theory

- Fragment of theory T is a syntactically restricted subset of formulae of the theory
- Example:
 - Quantifier-free fragment of theory T is the set of formulae without quantifiers that are valid in T
- Often decidable fragments for undecidable theories

Decidability

- Theory *T* is decidable if *T*-validity is decidable for every Σ_T-formula *F*
 - There is an algorithm that always terminates with "yes" if F is T-valid, and "no" if F is T-invalid
- Fragment of *T* is decidable if *T*-validity is decidable for every Σ_T-formula *F* in the fragment

Common First-Order Theories

- Theory of equality
- Peano arithmetic
- Presburger arithmetic
- Linear integer arithmetic
- Reals
- Rationals
- Arrays
- Recursive data structures

Theory of Equality T_E

Signature

$$\Sigma_E: \{=, a, b, c, \dots, f, g, h, \dots, p, q, r, \dots\}$$

consists of:

- a binary predicate "=" interpreted using provided axioms
- constant, function, and predicate symbols

Axioms of T_E

- 1. $\forall x. x = x$ (reflexivity)2. $\forall x, y. x = y \rightarrow y = x$ (symmetry)3. $\forall x, y, z. x = y \land y = z \rightarrow x = z$ (transitivity)
- 4. for each positive int. n and n-ary function symbol *f*,

$$\forall x_1, \dots, x_n, y_1, \dots, y_n. \ (\bigwedge_{i=1}^n x_i = y_i) \to f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$

(function congruence)

5. for each positive int. n and n-ary predicate symbol p,

$$\forall x_1, \dots, x_n, y_1, \dots, y_n. \ (\bigwedge_{i=1}^n x_i = y_i) \to (p(x_1, \dots, x_n) \leftrightarrow p(y_1, \dots, y_n))$$

(predicate congruence)

Decidability of T_E

- Bad news
 - T_E is undecidable
- Good news
 - Quantifier-free fragment of T_E is decidable
 - Very efficient algorithms

$x=y \land y=z \rightarrow g(f(x),y)=g(f(z),x)$

Arithmetic: Natural Numbers and Integers

Natural numbers $\mathbb{N} = \{0, 1, 2, ...\}$ Integers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$

Three theories:

- Peano arithmetic T_{PA}
 - Natural numbers with addition (+), multiplication (*), equality (=)
- Presburger arithmetic T_N
 - Natural numbers with addition (+), equality (=)
- Theory of integers $T_{\mathbb{Z}}$
 - Integers with addition (+), subtraction (-), comparison (>), equality (=), multiplication by constants

Peano Arithmetic T_{PA}

 Σ_{PA} : {0,1,+,*,=}

- T_{PA} -satisfiability and T_{PA} -validity are undecidable
 - Restrict the theory more

Presburger Arithmetic T_N

 $\Sigma_{\mathbb{N}}$: {0,1,+,=} no multiplication!

Axioms:

- 1. equality axioms for =
- 2. ∀*x*. ¬(*x*+1=0)
- 3. $\forall x, y$. $x+1=y+1 \rightarrow x=y$
- 4. $F[0] \land (\forall x.F[x] \rightarrow F[x+1]) \rightarrow \forall x.F[x]$ (induction)
- 5. $\forall x. x + 0 = x$
- 6. $\forall x, y. x+(y+1)=(x+y)+1$

x] (induction) (plus zero)

(successor)

(zero)

(plus successor)

Decidability of $T_{\mathbb{N}}$

• T_{N} -satisfiability and T_{N} -validity are decidable

Theory of Integers $T_{\mathbb{Z}}$

$$\Sigma_{\mathbb{Z}}: \{\dots, -2, -1, 0, 1, 2, \dots, -3^*, -2^*, 2^*, 3^*, \dots, +, -, =, >\}$$
 where

• ...,-2,-1,0,1,2,... are constants

...,-3*,-2*,2*,3*,... are unary functions
(intended meaning: 2*x is x+x, -3*x is -x-x-x)

+,-,>,= have the usual meaning

*T*_N and *T*_Z have the same expressiveness
Every Σ_Z-formula can be reduced to Σ_N-formula
Every Σ_N-formula can be reduced to Σ_Z-formula

Example of $T_{\mathbb{Z}}$ to $T_{\mathbb{N}}$ Reduction

Consider $\Sigma_{\mathbb{Z}}$ -formula $F_0: \forall w, x. \exists y, z. x + 2^*y - z - 13 > -3^*w + 5$

Introduce two variables v_p and v_n (range over natural numbers) for each variable v (range over integers) in F_0 :

$$F_{1}: \forall w_{p}, w_{n}, x_{p}, x_{n}. \exists y_{p}, y_{n}, z_{p}, z_{n}.$$

$$(x_{p}-x_{n}) + 2^{*}(y_{p}-y_{n}) - (z_{p}-z_{n}) - 13 > -3^{*}(w_{p}-w_{n}) + 5$$

Eliminate - by moving to the other side of >:

$$F_{2}: \forall w_{p}, w_{n}, x_{p}, x_{n}. \exists y_{p}, y_{n}, z_{p}, z_{n}.$$

$$x_{p} + 2^{*}y_{p} + z_{n} + 3^{*}w_{p} > x_{n} + 2^{*}y_{n} + z_{p} + 13 + 3^{*}w_{n} + 5$$

Example of $T_{\mathbb{Z}}$ to $T_{\mathbb{N}}$ Reduction cont.

Eliminate * and >:

• F_3 is a Σ_N -formula equisatisfiable to F_0

Example of $T_{\mathbb{N}}$ to $T_{\mathbb{Z}}$ Reduction

Consider $\Sigma_{\mathbb{N}}$ -formula $F: \forall x. \exists y. x=y+1$

F is equisatisfiable to $\Sigma_{\mathbb{Z}}$ -formula $\forall x. \ x > -1 \rightarrow \exists y. \ y > -1 \land x = y + 1$

Decidability of $T_{\mathbb{Z}}$

• $T_{\mathbb{Z}}$ -satisfiability and $T_{\mathbb{Z}}$ -validity are decidable

$x > z \land y >= 0 \rightarrow x + y > z$

Next Time

- More on first-order theories
 - Arithmetic with rationals and reals
 - Arrays
 - Recursive data structures
- Complexities for theories