Lecture 4 First-Order Logic

Zvonimir Rakamarić University of Utah

Last Time

- DPLL algorithm
- Used in SAT solvers
- Encoding a problem into SAT
- Homework 1

This Time

- First-order logic
- Reading: Chapter 2

Basic Verifier Architecture

First-Order Logic (FOL)

- Extends propositional logic with predicates, functions, and quantifiers
- More expressive than PL
- Suitable for reasoning about computation
- Examples

The length of one side of a triangle is less than the sum of the lengths of the other two sides $\forall x, y, z$. $\operatorname{triangle}(x, y, z) \rightarrow \operatorname{len}(x)<\operatorname{len}(y)+\operatorname{len}(z)$

- All elements of array A are 0
$\forall i .0 \leq i \wedge i<\operatorname{size}(A) \rightarrow A[i]=0$
variables x, y, z, \ldots
constants a, b, c, \ldots
functions f, g, h, \ldots
terms variables, constants, or n-ary function applied to n terms as arguments
predicates p, q, r, \ldots
atom $\quad \mathrm{T}, \perp$, or n -ary predicate applied to n terms
literal atom or its negation

Syntax cont.

formula literal, application of a logical connective $\{\neg, \wedge, \vee, \rightarrow, \leftrightarrow\}$ to formulae, or application of a quantifier to a formula

Quantifiers

- Existential: $\exists x . ~ F[x]$ "there exists an x such that $F x]$ "
- Universal: $\forall x$. $\mp x]$ "for all $x, F[x]$ "

Example

$\forall x . p(f(x), x) \rightarrow(\exists y . p(f(g(x, y)), g(x, y))) \wedge q(x, f(x))$

Semantics

- An interpretation $/$: $\left(D_{l}, \alpha_{l}\right)$ is a pair
- Domain D_{1}
- Non-empty set of values or objects
- Assignment α_{l} maps
- each variable x into value $x_{l} \in D_{l}$
- each n-ary function f into $f_{l}: D_{l}^{n} \rightarrow D_{l}$
, each n-ary predicate p into $p_{l}: D_{l}^{n} \rightarrow\{$ true, false $\}$
- Boolean connectives evaluated as in propositional logic

Example

$F: p(f(x, y), z) \rightarrow p(y, g(z, x))$
Interpretation $/:\left(D_{l}, \alpha_{l}\right)$ with

$$
D_{l}=\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\} \quad \text { (integers) }
$$

$\alpha_{l}:\{f \mapsto+, g \mapsto-, p \mapsto>\}$
$F_{1}: x+y>z \rightarrow y>z-x$
$\alpha_{1}:\{x \mapsto 13, y \mapsto 42, z \mapsto 1\}$
$F_{l}: 13+42>1 \rightarrow 42>1-13$
Compute the truth value of F under I

1. \quad 仨 $x+y>z$ since $13+42>1$
2. IF $y>z-x$ since $42>1-13$

F is true under I

Semantics of Quantifiers

- x-variant of interpretation $1:\left(D_{l}, \alpha_{l}\right)$ is an interpretation J : $\left(D_{J}, \alpha_{J}\right)$ such that
- $D_{1}=D_{J}$
- $\left.\alpha_{a}[y]=\alpha \int y\right]$ for all symbols y, except possibly x
I and J agree on everything except maybe the value of x
Denote $J: I \triangleleft\{x \mapsto v\}$ the x-variant of l in which $\alpha_{J}[x]=v$ for some $v \in D_{\text {, }}$. Then
-仨 $\forall x . F$ iff for all $v \in D_{l}, \triangleleft\{x \mapsto v\} \vDash F$
$\downarrow \mid \vDash \exists x . F$ iff there exists $v \in D_{l}$ such that $I \triangleleft\{x \mapsto v\} \vDash F$

Example

- For $D_{I}=\mathbb{Q}$ (set of rational numbers), consider

$$
F: \forall x . \exists y .2^{*} y=x
$$

- Compute the value of F_{l} :

Let

$$
J_{1}: I \triangleleft\{x \mapsto v\} \text { be } x \text {-variant of } /
$$

$J_{2}: J_{1} \triangleleft\{y \mapsto v / 2\}$ be y-variant of J_{1}
for $v \in \mathbb{Q}$.
Then

1. $J_{2} \vDash 2$ * $y=x \quad$ since $2 * v / 2=v$
2. $J_{1} \vDash \exists y .2$ * $y=x$
3. $I \vDash \forall x . \exists y .2^{*} y=x$ since $v \in \mathbb{Q}$ is arbitrary

Satisfiability and Validity

- F is satisfiable iff there exists $/$ such that $I \vDash F$
- F is valid iff for all $I, I \vDash F$
F is valid iff $\neg F$ is unsatisfiable
- FOL is undecidable
- There does not exist an algorithm for deciding if a FOL formula F is valid/unsat
- l.e., that always halts and returns "yes" if F is valid/unsat or "no" if F is invalid/sat.
- FOL is semi-decidable
- There is a procedure that always halts and returns "yes" if F is valid, but may not halt if F is invalid.

Semantic Argument Method

- For proving validity of F in FOL
- Assume F is not valid and I is a falsifying interpretation: lFF
- Exhaustively apply proof rules
- If no contradiction reached and no more rules are applicable
- F is invalid
- If in every branch of proof a contradiction reached
, F is valid

Proof Rule

- Consists of:
- Premises (one or more)
- Deductions (one or more)
- Application
- Match premises to existing facts and form deductions
- Branch (fork) when needed
- Example - proof rules for \wedge

$$
\frac{I j F^{\wedge} G}{I j=F} \quad \frac{I f F^{\wedge} G}{I f F I f G}
$$

Proof Rules for Propositional Part

$$
\begin{aligned}
& \frac{1 j: F}{1 F F} \frac{1 F: F}{1 j F} \quad \frac{1 j F^{\wedge} G}{1 j F} \quad \frac{1 F F^{\wedge} G}{1 F F I F G}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{I j F \$ G}{1 j^{\wedge} F^{\wedge} \mathrm{IFF}_{-} G} \\
& \frac{I f F \$ G}{I j^{\wedge}: G I j: F^{\wedge} G} \\
& \begin{array}{l}
1 j F \\
1 \beta F \\
\hline 1 j=?
\end{array}
\end{aligned}
$$

Proof Rules for Quantifiers

$$
\begin{aligned}
& \frac{I j=8 x: F}{I / f x \nabla v g j F} \text { for any v2 } D_{।} \\
& \frac{I f 8 x: F}{I / f \times \nabla v g f F} \text { for a fresh v } 2 D_{।}
\end{aligned}
$$

any - usually use v introduced earlier in the proof

$$
\frac{I j=9 x: F}{I / f \times \nabla v g j=F} \text { for a fresh } v 2 D_{I}
$$

fresh - use v that has not been previously used in the proof

Example 1

$F: p(a) \rightarrow \exists x . p(x)$

Example 2

$F:(\forall x . p(x)) \leftrightarrow(\neg \exists x . \neg p(x))$

Next Lecture

- Issues with FOL
- Validity in FOL is undecidable
- Too general
- First-order logic theories
- Often decidable fragments of FOL suitable for reasoning about particular domain
, Equality
- Arithmetic
- Arrays

