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Last Time 

 DPLL algorithm 

 Used in SAT solvers 

 Encoding a problem into SAT 

 Homework 1 



This Time 

 First-order logic 

 Reading: Chapter 2 
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First-Order Logic (FOL) 

 Extends propositional logic with predicates, 

functions, and quantifiers 

 More expressive than PL 

 Suitable for reasoning about computation 

 Examples 

 The length of one side of a triangle is less than the 

sum of the lengths of the other two sides 

 ∀x, y, z. triangle(x, y, z)  len(x) < len(y) + len(z) 

 All elements of array A are 0 

 ∀i. 0 · i Æ i < size(A)  A[ i ] = 0 



Syntax 

variables x, y, z,… 

constants a, b, c, … 

functions f, g, h, … 

terms variables, constants, or n-ary function 

  applied to n terms as arguments 

predicates p, q, r, … 

atom  >, ?, or n-ary predicate applied to n 

  terms 

literal  atom or its negation 



Syntax cont. 

formula literal, application of a logical 
  connective {:,Æ,Ç,,$} to formulae, or 

  application of a quantifier to a formula 

 

 Quantifiers 

 Existential: ∃x. F[x] 

 “there exists an x such that F[x]” 

 Universal: ∀x. F[x] 

 “for all x, F[x]” 



Example 

∀x. p(f(x),x)  (∃y. p(f(g(x,y)),g(x,y))) Æ q(x,f(x)) 



Semantics 

 An interpretation I : (DI,I) is a pair 

 Domain DI 

 Non-empty set of values or objects 

 Assignment I maps 

 each variable x into value xI ∈ DI 

 each n-ary function f into fI : DI
n → DI 

 each n-ary predicate p into pI : DI
n → {true, false} 

 Boolean connectives evaluated as in propositional 

logic 



Example 

F : p(f(x,y),z)  p(y,g(z,x)) 
 

Interpretation I : (DI,I) with 

 DI = ℤ = {…,-2,-1,0,1,2,…}     (integers) 

 I : { f  +, g  –, p  > } 

FI : x + y > z    y > z – x 

 I : { x  13, y  42, z  1 } 

FI : 13 + 42 > 1    42 > 1 – 13 
 

Compute the truth value of F under I 

1. I ² x + y > z since 13 + 42 > 1 

2. I ² y > z – x since 42 > 1 – 13 

3. I ² F  follows from 1, 2, and    
 

F is true under I 



Semantics of Quantifiers 

 x-variant of interpretation I : (DI,I) is an 

interpretation J : (DJ,J) such that 

 DI = DJ 

 I[y] = J[y] for all symbols y, except possibly x 

I and J agree on everything except maybe the value of x 

 

 Denote J : I ◁ {x  v} the x-variant of I in which 

J[x] = v for some v ∈ DI. Then 

 I ² ∀x.F  iff for all v ∈ DI, I ◁ {x  v} ² F 

 I ² ∃x.F  iff there exists v ∈ DI such that I ◁ {x  v} ² F 



Example 

 For DI = ℚ (set of rational numbers), consider 

F ∶ ∀x. ∃y. 2 * y = x 

 Compute the value of FI : 

 Let 

  J1 ∶ I ◁ {x ↦ v} be x-variant of I 

  J2 ∶ J1 ◁ {y ↦ v/2} be y-variant of J1 

 for v ∈ ℚ. 

Then 

1. J2 ² 2 * y = x  since 2 * v/2 = v 

2. J1 ² ∃y. 2 * y = x 

3. I ² ∀x. ∃y. 2 * y = x since v ∈ ℚ is arbitrary 



Satisfiability and Validity 

 F is satisfiable iff there exists I such that I ² F 

 F is valid iff for all I, I ² F 

 F is valid iff :F is unsatisfiable 

 FOL is undecidable 

 There does not exist an algorithm for deciding if a 

FOL formula F is valid/unsat 

 I.e., that always halts and returns “yes” if F is valid/unsat 

or “no” if F is invalid/sat. 

 FOL is semi-decidable 

 There is a procedure that always halts and returns 

“yes” if F is valid, but may not halt if F is invalid. 



Semantic Argument Method 

 For proving validity of F in FOL 

 Assume F is not valid and I is a falsifying 

interpretation:  I    F 

 Exhaustively apply proof rules 

 If no contradiction reached and no more rules are 

applicable 

 F is invalid 

 If in every branch of proof a contradiction reached 

 F is valid 

6j=



Proof Rule 

 Consists of: 

 Premises (one or more) 

 Deductions (one or more) 

 Application 

 Match premises to existing facts and form deductions 

 Branch (fork) when needed 

 Example – proof rules for Æ 

I j= F ^ G

I j= F

I j= G

I 6j= F ^ G

I 6j= F I 6j= G



Proof Rules for Propositional Part 

I j= : F

I 6j= F

I 6j= : F

I j= F

I j= F ^ G

I j= F

I j= G

I 6j= F ^ G

I 6j= F I 6j= G

I j= F _ G

I j= F I j= G

I 6j= F _ G

I 6j= F

I 6j= G

I j= F ! G

I 6j= F I j= G

I 6j= F ! G

I j= F

I 6j= G

I j= F $ G

I j= F ^ G I 6j= F _ G

I 6j= F $ G

I j= F ^ : G I j= : F ^ G

I j= F
I 6j= F

I j= ?



Proof Rules for Quantifiers 

I j= 8x:F

I / f x 7! vg j= F
for any v 2 D I

I 6j= 9x:F

I / f x 7! vg 6j= F
for any v 2 D I

I j= 9x:F

I / f x 7! vg j= F
for a fresh v 2 D I

I 6j= 8x:F

I / f x 7! vg 6j= F
for a fresh v 2 D I

any – usually use v 

introduced earlier in 

the proof 

fresh – use v that has 

not been previously 

used in the proof 



Example 1 

F : p(a)  ∃x. p(x) 



Example 2 

F : (∀x. p(x)) $ (:∃x. :p(x)) 



Next Lecture 

 Issues with FOL 

 Validity in FOL is undecidable 

 Too general 

 First-order logic theories 

 Often decidable fragments of FOL suitable for 

reasoning about particular domain 

 Equality 

 Arithmetic 

 Arrays 


