CS 5110/6110 – Rigorous System Design | Spring 2016 Jan-21

Lecture 4 First-Order Logic

Zvonimir Rakamarić University of Utah

Last Time

- DPLL algorithm
 - Used in SAT solvers
- Encoding a problem into SAT
 - Homework 1

This Time

- First-order logic
- Reading: Chapter 2

Basic Verifier Architecture

First-Order Logic (FOL)

- Extends propositional logic with predicates, functions, and quantifiers
 - More expressive than PL
 - Suitable for reasoning about computation
- Examples
 - The length of one side of a triangle is less than the sum of the lengths of the other two sides

 $\forall x, y, z. triangle(x, y, z) \rightarrow len(x) < len(y) + len(z)$

► All elements of array A are 0 $\forall i$. $0 \le i \land i < size(A) \rightarrow A[i] = 0$

Syntax

- variables x, y, z,...
 constants a, b, c, ...
 functions f, g, h, ...
 terms variables, constants, or n-ary function
 applied to n terms as arguments
 predicates p, q, r, ...
- atom op, \bot , or n-ary predicate applied to n terms
- *literal* atom or its negation

Syntax cont.

formula literal, application of a logical connective $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ to formulae, or application of a *quantifier* to a formula

Quantifiers

- Existential: ∃x. F[x]
 "there exists an x such that F[x]"
- Universal: ∀x. F[x] "for all x, F[x]"

Example

$\forall x. \ p(f(x), x) \rightarrow (\exists y. \ p(f(g(x, y)), g(x, y))) \land q(x, f(x))$

Semantics

- An interpretation $I: (D_l, \alpha_l)$ is a pair
 - Domain D_l
 - Non-empty set of values or objects
 - Assignment α_l maps
 - each variable x into value $x_l \in D_l$
 - each n-ary function f into $f_I : D_I^n \to D_I$
 - ▶ each n-ary predicate p into $p_I : D_I^n \rightarrow \{\text{true, false}\}$
 - Boolean connectives evaluated as in propositional logic

Example

 $F: p(f(x,y),z) \rightarrow p(y,g(z,x))$ Interpretation $I: (D_{l},\alpha_{l})$ with $D_{l} = \mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\} \quad \text{(integers)}$ $\alpha_{l}: \{f \mapsto +, g \mapsto -, p \mapsto > \}$ $F_{l}: x + y > z \rightarrow y > z - x$ $\alpha_{l}: \{x \mapsto 13, y \mapsto 42, z \mapsto 1\}$ $F_{l}: 13 + 42 > 1 \rightarrow 42 > 1 - 13$

Compute the truth value of *F* under *I* 1. $I \models x + y > z$ since 13 + 42 > 1 2. $I \models y > z - x$ since 42 > 1 - 13 3. $I \models F$ follows from 1, 2, and \rightarrow

F is true under I

Semantics of Quantifiers

- *x-variant* of interpretation $I : (D_I, \alpha_I)$ is an interpretation $J : (D_J, \alpha_J)$ such that
 - $\blacktriangleright D_I = D_J$
 - α_l[y] = α_j[y] for all symbols y, except possibly x
 I and J agree on everything except maybe the value of x
- Denote J: I ⊲ {x ↦ v} the x-variant of I in which α_J[x] = v for some v ∈ D_I. Then
 I ⊨ ∀x.F iff for all v ∈ D_I, I ⊲ {x ↦ v} ⊨ F
 I ⊨ ∃x.F iff there exists v ∈ D_I such that I ⊲ {x ↦ v} ⊨ F

Example

- For $D_1 = \mathbb{Q}$ (set of rational numbers), consider $F: \forall x. \exists y. 2 * y = x$
- Compute the value of F_i: Let

$$J_1: I \triangleleft \{x \mapsto v\} \text{ be x-variant of } I$$
$$J_2: J_1 \triangleleft \{y \mapsto v/2\} \text{ be y-variant of } J_1$$
for $v \in \mathbb{Q}$.

Then

1. $J_2 \models 2 * y = x$ since 2 * v/2 = v2. $J_1 \models \exists y. 2 * y = x$ 3. $I \models \forall x. \exists y. 2 * y = x$ since $v \in \mathbb{Q}$ is arbitrary

Satisfiability and Validity

- *F* is satisfiable iff there exists *I* such that $I \vDash F$
- F is valid iff for all $I, I \vDash F$

F is valid iff $\neg F$ is unsatisfiable

- FOL is undecidable
 - There does not exist an algorithm for deciding if a FOL formula F is valid/unsat
 - I.e., that always halts and returns "yes" if F is valid/unsat or "no" if F is invalid/sat.

FOL is semi-decidable

There is a procedure that always halts and returns "yes" if F is valid, but may not halt if F is invalid.

Semantic Argument Method

- For proving validity of F in FOL
- Assume F is not valid and I is a falsifying interpretation:
- Exhaustively apply proof rules
 - If no contradiction reached and no more rules are applicable
 - F is invalid
 - If in every branch of proof a contradiction reached
 - ► F is valid

Proof Rule

Consists of:

- Premises (one or more)
- Deductions (one or more)

Application

- Match premises to existing facts and form deductions
- Branch (fork) when needed
- Example proof rules for \wedge

Proof Rules for Propositional Part

$$\frac{I \models : F}{I \not \models F} = \frac{I \not \models : F}{I \models F} = \frac{I \models F \land G}{I \models F} = \frac{I \not \models F \land G}{I \not \models F} = \frac{I \not \models F \land G}{I \not \models F \land G}$$

$$\frac{I \models F \land G}{I \models F \land F} = \frac{I \not \models F \land G}{I \not \models F} = \frac{I \not \models F \land G}{I \not \models F \land G} = \frac{I \not \models F \land G}{I \not \models F \land G}$$

$$\frac{I \models F \land G}{I \models F \land G \land f \not \models F \land G} = \frac{I \not \models F \land G}{I \not \models F \land G}$$

$$\frac{I \not \models F \land G}{I \models F \land G \land f \not \models F \land G}$$

$$\frac{I \not \models F \land G}{I \not \models F \land G \land f \not \models F \land G}$$

$$\frac{I \not \models F \land G}{I \not \models F \land G \land f \not \models F \land G}$$

Proof Rules for Quantifiers

$$\frac{I \models 8x:F}{I / f x \not r \ vg \models F} \text{ for any } v 2 D_1$$

$$\frac{I \oiint 8x:F}{I / f x \not r \ vg \oiint F} \text{ for a fresh } v 2 D_1$$

$$\frac{I \models 9x:F}{I / f x \not r \ vg \models F} \text{ for a fresh } v 2 D_1$$

$$\frac{I \oiint 9x:F}{I / f x \not r \ vg \models F} \text{ for a fresh } v 2 D_1$$

any – usually use *v* introduced earlier in the proof fresh – use *v* that has not been previously used in the proof

 $F: p(a) \rightarrow \exists x. p(x)$

 $F: (\forall x. p(x)) \leftrightarrow (\neg \exists x. \neg p(x))$

Next Lecture

- Issues with FOL
 - Validity in FOL is undecidable
 - Too general
- First-order logic theories
 - Often decidable fragments of FOL suitable for reasoning about particular domain
 - Equality
 - Arithmetic
 - Arrays