
Lecture 4

First-Order Logic

Zvonimir Rakamarić
University of Utah

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAA

CS 5110/6110 – Rigorous System Design | Spring 2016

Jan-21

Last Time

 DPLL algorithm

 Used in SAT solvers

 Encoding a problem into SAT

 Homework 1

This Time

 First-order logic

 Reading: Chapter 2

Basic Verifier Architecture

Program with
specifications
(assertions)

Verification
condition
generator

Verification
condition
(formula)

Theorem
prover

Program
correct or list

of errors

First-Order Logic (FOL)

 Extends propositional logic with predicates,

functions, and quantifiers

 More expressive than PL

 Suitable for reasoning about computation

 Examples

 The length of one side of a triangle is less than the

sum of the lengths of the other two sides

 ∀x, y, z. triangle(x, y, z) len(x) < len(y) + len(z)

 All elements of array A are 0

 ∀i. 0 · i Æ i < size(A) A[i] = 0

Syntax

variables x, y, z,…

constants a, b, c, …

functions f, g, h, …

terms variables, constants, or n-ary function

 applied to n terms as arguments

predicates p, q, r, …

atom >, ?, or n-ary predicate applied to n

 terms

literal atom or its negation

Syntax cont.

formula literal, application of a logical
 connective {:,Æ,Ç,,$} to formulae, or

 application of a quantifier to a formula

 Quantifiers

 Existential: ∃x. F[x]

 “there exists an x such that F[x]”

 Universal: ∀x. F[x]

 “for all x, F[x]”

Example

∀x. p(f(x),x) (∃y. p(f(g(x,y)),g(x,y))) Æ q(x,f(x))

Semantics

 An interpretation I : (DI,I) is a pair

 Domain DI

 Non-empty set of values or objects

 Assignment I maps

 each variable x into value xI ∈ DI

 each n-ary function f into fI : DI
n → DI

 each n-ary predicate p into pI : DI
n → {true, false}

 Boolean connectives evaluated as in propositional

logic

Example

F : p(f(x,y),z) p(y,g(z,x))

Interpretation I : (DI,I) with

 DI = ℤ = {…,-2,-1,0,1,2,…} (integers)

 I : { f +, g –, p > }

FI : x + y > z y > z – x

 I : { x 13, y 42, z 1 }

FI : 13 + 42 > 1 42 > 1 – 13

Compute the truth value of F under I

1. I ² x + y > z since 13 + 42 > 1

2. I ² y > z – x since 42 > 1 – 13

3. I ² F follows from 1, 2, and

F is true under I

Semantics of Quantifiers

 x-variant of interpretation I : (DI,I) is an

interpretation J : (DJ,J) such that

 DI = DJ

 I[y] = J[y] for all symbols y, except possibly x

I and J agree on everything except maybe the value of x

 Denote J : I ◁ {x v} the x-variant of I in which

J[x] = v for some v ∈ DI. Then

 I ² ∀x.F iff for all v ∈ DI, I ◁ {x v} ² F

 I ² ∃x.F iff there exists v ∈ DI such that I ◁ {x v} ² F

Example

 For DI = ℚ (set of rational numbers), consider

F ∶ ∀x. ∃y. 2 * y = x

 Compute the value of FI :

 Let

 J1 ∶ I ◁ {x ↦ v} be x-variant of I

 J2 ∶ J1 ◁ {y ↦ v/2} be y-variant of J1

 for v ∈ ℚ.

Then

1. J2 ² 2 * y = x since 2 * v/2 = v

2. J1 ² ∃y. 2 * y = x

3. I ² ∀x. ∃y. 2 * y = x since v ∈ ℚ is arbitrary

Satisfiability and Validity

 F is satisfiable iff there exists I such that I ² F

 F is valid iff for all I, I ² F

 F is valid iff :F is unsatisfiable

 FOL is undecidable

 There does not exist an algorithm for deciding if a

FOL formula F is valid/unsat

 I.e., that always halts and returns “yes” if F is valid/unsat

or “no” if F is invalid/sat.

 FOL is semi-decidable

 There is a procedure that always halts and returns

“yes” if F is valid, but may not halt if F is invalid.

Semantic Argument Method

 For proving validity of F in FOL

 Assume F is not valid and I is a falsifying

interpretation: I F

 Exhaustively apply proof rules

 If no contradiction reached and no more rules are

applicable

 F is invalid

 If in every branch of proof a contradiction reached

 F is valid

6j=

Proof Rule

 Consists of:

 Premises (one or more)

 Deductions (one or more)

 Application

 Match premises to existing facts and form deductions

 Branch (fork) when needed

 Example – proof rules for Æ

I j= F ^ G

I j= F

I j= G

I 6j= F ^ G

I 6j= F I 6j= G

Proof Rules for Propositional Part

I j= : F

I 6j= F

I 6j= : F

I j= F

I j= F ^ G

I j= F

I j= G

I 6j= F ^ G

I 6j= F I 6j= G

I j= F _ G

I j= F I j= G

I 6j= F _ G

I 6j= F

I 6j= G

I j= F ! G

I 6j= F I j= G

I 6j= F ! G

I j= F

I 6j= G

I j= F $ G

I j= F ^ G I 6j= F _ G

I 6j= F $ G

I j= F ^ : G I j= : F ^ G

I j= F
I 6j= F

I j= ?

Proof Rules for Quantifiers

I j= 8x:F

I / f x 7! vg j= F
for any v 2 D I

I 6j= 9x:F

I / f x 7! vg 6j= F
for any v 2 D I

I j= 9x:F

I / f x 7! vg j= F
for a fresh v 2 D I

I 6j= 8x:F

I / f x 7! vg 6j= F
for a fresh v 2 D I

any – usually use v

introduced earlier in

the proof

fresh – use v that has

not been previously

used in the proof

Example 1

F : p(a) ∃x. p(x)

Example 2

F : (∀x. p(x)) $ (:∃x. :p(x))

Next Lecture

 Issues with FOL

 Validity in FOL is undecidable

 Too general

 First-order logic theories

 Often decidable fragments of FOL suitable for

reasoning about particular domain

 Equality

 Arithmetic

 Arrays

