
Lecture 1

Course Overview & Introduction

CS 5110/6110 – Rigorous System Design | Spring 2016

Jan-12

Zvonimir Rakamarić
University of Utah

Course Overview

 Instructor: Zvonimir Rakamarić

 Teaching assistant: Shaobo He

 Course page is on Canvas

 Main goals
 Gain solid understanding of basic theory and practice

behind proving correctness of systems (mainly
programs)

 Cover advanced topics (interpolants, dealing with
concurrency) in second part of the course

 Textbook: The Calculus of Computation by Aaron
R. Bradley and Zohar Manna
 Electronic version is free through SpringerLink

Topics

 Propositional logic and SAT

 First-order logic and SMT

 Verification conditions

 Weakest precondition

 Proving program correctness

 Pre- and post-conditions

 Loop invariants

 Symbolic and concolic execution

 Advanced topics

 Analyzing concurrent programs

Course Organization

 Lectures
 Discuss basic and advanced software verification

topics

 Emphasize on lasting foundations and theory

 Homework assignments
 Hands-on exercises accompanying presented

material

 Some coding required in your programming
language of choice

 Projects
 Focused, practical exploration of a topic related to

software verification (and ideally your research
too!)

Course Communication

 Leverage Canvas

 Post questions

 Discuss concerns

 Ask for help and clarifications

 Email: zvonimir@cs.utah.edu

 Private questions (e.g., questions related to your

grade)

mailto:zvonimir@cs.utah.edu

Grading

 40% homework assignments

 4-5 practical homework assignments

 Each assignment is worth the same

 60% course project

 Project proposal (10 points)

 Final presentation (30 points)

 Final report (50 points)

 Peer review (10 points)

 5110 students will be graded differently

Course Projects

 Mini research projects

 Publishing a (workshop) paper is the ultimate goal

 Deadlines still not defined

 I will update the webpage by the end of this week

 I will also come up with a list of potential topics

 Team work

 Allowed (up to 2 students)

 You have to do twice as much work

 If it is not clearly specified who did how much work,

both students will get the same grade

Collaboration vs Cheating

 Discussing homework and project solutions
at high-level is fine and encouraged

 Basing your code/write-up on any other
code/write-up is cheating
 do not copy solutions from another student

 do not copy solutions from the internet

 do not even look at solutions from another
student

 do not ask for solutions on online forums

 ………

 Acknowledge appropriately any outside
materials you used or rely on

Collaboration vs Cheating cont.

 I will officially report instances of cheating

 I will request that you fail this class

 If confirmed, cheating will be on your record

with this department

 Ignorance is not a valid excuse

 Read our policies on cheating

 Talk to professors if you are still not sure

Late Policy

 Late homework assignments and project

deliverables will not be accepted unless you

contact me before the deadline and have a

good excuse

Discussion

 Where can software be found nowadays?

 Any bad software bugs you heard about?

Introduction to Software Verification

 Software is everywhere

 Personal computers, mobile phones, in cars,

ATMs, banks, planes, space shuttles, hospitals…

 Software has errors

 Software systems are generally large, complex,

and prone to errors…

 And getting larger and more complex…

 Multi-cores and many-cores

 …and more error prone!

Worst Software Bugs (Wired, 2005)

[http://www.wired.com/software/coolapps/news/2005/11/69355]

 1962: Mariner I space probe

 1982: Soviet gas pipeline

 1985-87: Therac-25 medical accelerator

 1988: Berkeley Unix finger daemon

 1988-96: Kerberos Random Number Generator

 1990: AT&T Network Outage

 1993: Intel Pentium floating point divide

 1995-96: The Ping of Death

 1996: Ariane 5 Rocket

 2000: Cancer institute’s therapy planning software

http://www.wired.com/software/coolapps/news/2005/11/69355

Therac-25 Medical Accelerator

 Radiation therapy machine produced by Atomic

Energy of Canada Limited (AECL)

 Bug: Race condition (concurrency error)

between concurrent tasks in the Therac-25

software

 Massive overdoses of radiation

 Between 1985-87 at least five patients die;

others are seriously injured

Therapy Planning Software

 November 2000, National Cancer Institute,

Panama City

 Therapy planning software miscalculates the

proper dosage of radiation for patients undergoing

radiation therapy

 At least 8 patients die, another 20 receive

overdoses likely to cause significant health

problems

Ariane 5 Rocket

 June 4, 1996: Ariane 5

Flight 501 crash

 Working code for the

Ariane 4 rocket is reused

in the Ariane 5

 Ariane 5's faster engines trigger an overflow

condition in an arithmetic routine inside the

rocket's flight computer

 Flight computer crashes

 The rocket explodes 40 seconds after launch

Automotive Industry

[http://www.embedded.com/columns/embeddedpulse/179100752]

 2001: 52,000 Jeeps recalled due to a software

error that can shut down the instrument cluster.

 2002: BMW recalls the 745i since the fuel pump

would shut off if the tank was less than 1/3 full.

 2003: A BMW trapped a Thai politician when the

computer crashed. The door locks, windows, A/C

and more were inoperable. Responders

smashed the windshield to get him out.

http://www.embedded.com/columns/embeddedpulse/179100752

Automotive Industry cont.

 2004: Pontiac recalls the Grand Prix since the

software didn’t understand leap years. 2004 was

a leap year.

 2005: Toyota recalls 75,000 Prius hybrids due to

a software defect

 Cars stall or shut down while driving at highway

speeds

 Owners advised to bring their cars into dealers for

an hour-long software upgrade

 2010: Toyota recalls 300,000 Prius cars

 Software bug?

Code Red Worm

 2001: Code Red worm

attacks the Index

Server ISAPI

Extension in Microsoft

Internet Information

Services

  Exploit used: Buffer overflow bug

 Worm released on July 13

 The number of infected hosts reached 359,000

on July 19

 Estimated damages are $2.6 billion

Motivation

 Software errors are costly

 US National Institute of Standards & Technology:

 Software errors cost the US economy alone an

 estimated $60 billion each year

 Improving software quality and reliability is a

major software engineering concern

Testing

 Quality assurance relies heavily on testing

 Pros

 Scalable, precise (no false bugs)

 Easy to adopt and understand

 Testing (even random) does find lots of bugs

 Cons

 Time consuming and costly

 Writing (good) test cases

 Tester:Developer ratio at Microsoft around 1:1

 Coverage

 Important bugs still escape

Simple Testing Example

void foo(int x) {

 …

 …

 …

}

foo(???);

foo(INT_MAX);

foo(INT_MIN);

foo(0);

foo(random());

foo(random());

foo(random());

………

Example Where Testing Works

void foo(int x) {

 if (x == 0) {

 BUG!

 }

}

Example Where Testing Fails

void foo(int x) {

 if (x == 914) {

 BUG!

 }

}

Formal Software Verification

 Definition from Wikipedia:

 “Statically proving or disproving the correctness of

a program with respect to a certain formal

specification or property using formal methods of

mathematics.”

 Could be a very effective way to deal with the

software reliability problem

Brief History

 Turing, “Checking a Large Routine”, 1949.

 We need proofs of programs

 Mentions modularity

 Early attempt at a general proof method

 Floyd, “Assigning Meaning to Programs”, 1967.

 Workable proof method

 Hoare, “An Axiomatic Basis for Computer

Programming”, 1969.

 Further formalized

 Dijkstra, “A Discipline of Programming”, 1976.

 Further formalized

Why Formal Verification?

 Static (or source code) analysis

 Doesn’t execute code, no test cases

 High coverage

 Explores all possible paths through code

 Finds more hard bugs

 Lower costs and turn-around time

 No silver bullet

 Undecidable in general

 Either misses bugs or returns false errors

 Scalability and precision

Basic Verifier Architecture

Program with
specifications
(assertions)

Verification
condition
generator

Verification
condition
(formula)

Theorem
prover

Program
correct or list

of errors

Some Industry Success Stories

 Microsoft
 SLAM – device drivers

 Pex – automatic unit testing of .NET

 Code Contracts – contracts for .NET

 SAGE – whitebox fuzzing for security

 Startups
 Coverity, Polyspace, Fortify…

 Astree project in France
 Used by Airbus

 Verified software efforts
 NICTA's secure microkernel

 Microsoft Hypervisor

SAGE

 Finding security bugs using whitebox fuzzing

 Security bugs are expensive (MSR report)

 Cost of each serious security bug: $Millions

 Cost due to worms: $Billions

 Running on 100s machines 24/7

 Fuzzing 100s of applications

 Media players, image processors, file decoders,

document parsers…

 Finding 100s of security bugs

 Saves tons of money/time/energy

SAGE cont.

“Every second Tuesday of every month, also known
as "Patch Tuesday," Microsoft releases a list of
security bulletins and associated security patches to
be deployed on hundreds of millions of machines
worldwide. Each security bulletin costs Microsoft and
its users millions of dollars. If a monthly security
update costs you $0.001 (one tenth of one cent) in
just electricity or loss of productivity, then this
number multiplied by a billion people is $1 million. Of
course, if malware were spreading on your machine,
possibly leaking some of your private data, then that
might cost you much more than $0.001. This is why
we strongly encourage you to apply those pesky
security updates.”

Summary

 Software has bugs

 Bugs can be very expensive

 Catch easy bugs with testing, etc.

 Use software verification techniques to catch

hard bugs

Next Lecture

 Propositional logic

 SAT solvers

