
Approximation Algorithms Using Hierarchies of Semidefinite Programming
Relaxations

Eden Chlamtac∗

Princeton University
E-mail: chlamtac@cs.princeton.edu

Abstract

We introduce a framework for studying semidefinite pro-
gramming (SDP) relaxations based on the Lasserre hierar-
chy in the context of approximation algorithms for combi-
natorial problems. As an application of our approach, we
give improved approximation algorithms for two problems.
We show that for some fixed constant ε > 0, given a 3-
uniform hypergraph containing an independent set of size
( 1
2 − ε)n, we can find an independent set of size Ω(nε).

This improves upon the result of Krivelevich, Nathaniel and
Sudakov, who gave an algorithm finding an independent set
of size Ω̃(n6γ−3) for hypergraphs with an independent set
of size γn (but no guarantee for γ ≤ 1

2 ). We also give
an algorithm which finds an O(n0.2072)-coloring given a 3-
colorable graph, improving upon the work of Arora, Chlam-
tac and Charikar. Our approach stands in contrast to a long
series of inapproximability results in the Lovász Schrijver
linear programming (LP) and SDP hierarchies for other
problems.

1 Introduction

Semidefinite Programming (SDP) has been one of the
most important tools in designing approximation algorithms
for combinatorial optimization problems for the last sev-
eral years. Starting with the seminal work of Goemans and
Williamson [14] on MAXCUT, there has been a series of re-
sults on a diverse range of combinatorial problems. While
for a number of problems, including MAXCUT [14], MAX-
3SAT [17, 28], and Unique Games [10], SDPs lead to ap-
proximation algorithms which are essentially optimal un-
der certain complexity-theoretic assumptions [15, 19], for
a host of other problems the gap between known hardness
of approximation and approximation algorithmic guarantee
remains quite large.

One possible avenue of improvement on the approxima-
tion side is the use of so-called SDP hierarchies. Such hi-
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erarchies have been proposed by Lovász and Schrijver [23],
Sherali and Adams [26], and Lasserre [22] (see [21] for a
comparison). Each hierarchy is characterized by a method
(such methods are known collectively as “lift-and-project”)
by which one can take a semidefinite relaxation for an in-
teger (0 − 1) program, and strengthen it repeatedly, thus
constructing the various levels of the hierarchy. These hier-
archies have the joint property that for an integer program
on n variables, the nth level of the hierarchy is equivalent
to the original integer program.

The quality of approximation of SDP hierarchies has
been studied more generally in the context of optimiza-
tion of polynomials over semi-algebraic sets [12, 6, 24].
In the combinatorial optimization setting, there has been
a series of negative results, starting with [2], showing that
the Lovász-Schrijver hierarchies LS (a linear programming
hierarchy) and LS+ (the SDP variant) do not yield good
approximations for certain problems. For Vertex Cover,
Schoenebeck et al. [25] showed that the integrality gap of
the standard LP relaxation is 2 − o(1) even after Ω(n)
rounds of LS, while Georgiou et al. [13] have shown that an
integrality gap of 2 − o(1) survives Ω(

√
log n/ log log n)

rounds of LS+. For MAX-3SAT, Hypergraph Vertex Cover
and Set Cover, Alekhnovich et al. [1] showed that Ω(n)
rounds of LS+ do not give any nontrivial approximations.

Given that the kth level of any of these hierarchies is only
known to be solvable in polynomial time for constant k, it
is natural to ask whether for any combinatorial optimization
problem, SDP hierarchies yield improved approximations
at a constant level. One reason to expect that this should be
the case is the following property common to the three SDP
hierarchies mentioned above. For any set of k variables (for
example, indicator functions for whether vertices are in an
independent set), any solution to the kth level of the hierar-
chy projected onto this set is a convex combination of legal
0 − 1 solutions. For this reason and others, a good candi-
date problem is one for which local properties propagate to
a global scale without much loss.

More concretely, we propose the following heuristic.
Given an algorithm which rounds an SDP solution, ana-
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lyze this algorithm under the assumption that the solution
is in fact a convex combination of legal 0 − 1 solutions (as
a thought experiment). If the analysis is sufficiently local,
then it should also apply to the kth level of an SDP hier-
archy. To this end, we offer a tool to apply certain kinds
of analyses of (convex combinations of) integral solutions
to the setting of SDP hierarchies based on the Lasserre re-
laxation of Independent Set. As an application, we investi-
gate two problems for which the status of their approxima-
bility is still open, namely, Maximum Independent Set in
3-uniform hypergraphs and Graph Coloring. For both prob-
lems we show an improvement in the quality of the guaran-
teed approximation. In the case of the first problem, this is
also a proven improvement in the integrality gap.

We start with the problem of finding large independent
sets in 3-uniform hypergraphs. k-uniform hypergraphs are
collections of sets of size k (“hyperedges”) over a vertex
set. An independent set is a subset of the vertices which
does not fully contain any hyperedge. This problem was
previously explored by Krivelevich et al. [20], who showed
that for any 3-uniform hypergraph on n vertices contain-
ing an independent set of size γn, one can find an indepen-
dent set of size Ω̃(min{n, n6γ−3}). This does not yield any
nontrivial guarantee for γ ≤ 1

2 , and in fact one can con-
struct tight integrality gaps for this range of γ showing that
their SDP relaxation is satisfied (i.e. has an optimum value
at least γn) even when the hypergraph contains no indepen-
dent sets larger than 2. In contrast, we show that using the
third level of the hierarchy, one can find an independent set
of size Ω(nε) whenever γ ≥ 1

2 − ε, for some fixed ε > 0.

The second problem we consider is that of coloring 3-
colorable graphs with as few colors as possible. This prob-
lem has a long history of study starting with the O(

√
n)-

coloring algorithm of Wigderson [27], through the sophis-
ticated combinatorial approach of Blum [7], the SDP ap-
proach of Karger, Motwani and Sudan [16], and finally
the Õ(n3/14) approximation of Blum and Karger [8]. Re-
cently, this result was improved by Arora, Chlamtac and
Charikar [3], who gave an O(n0.2111)-coloring algorithm
using a new geometric analysis of the SDP rounding simi-
lar to the SPARSEST CUT result of Arora, Rao and Vazi-
rani [5]. While we borrow some of the basic terminology
and tools introduced in [3], we deviate significantly from
their approach, in that our analysis does not involve any
event-chaining or measure-concentration results. Reducing
the problem to Max Independent Set, and using the third
level of the corresponding Lasserre relaxation, we find a le-
gal coloring of the graph using O(n0.2072) colors.

In related work, the present author and Singh [9] have
also shown that 2-colorable 4-uniform hypergraphs can be
colored using at most O(n3/4−ε) colors (for some constant
ε > 0), improving upon the previous O(n3/4)-coloring al-
gorithm of Chen and Frieze [11].

The rest of the paper is organized as follows. In Sec-
tion 2 we define the SDPs used in the various algorithms,
and show some useful properties of relaxations of this form
which are used in the analysis. In sections 3 and 4 we give
the results for hypergraph independent sets, and graph col-
oring, respectively. The analysis of the coloring algorithm
relies on some unpublished lemmas which were a continua-
tion of the work done by Arora, Chlamtac and Charikar [3]
(see Appendix A). We stress that our current improvement
also gives a better guarantee than that which is achievable
by applying these tools to the analysis in [3].

2 SDP relaxations and preliminaries

2.1 Independent Set relaxations using the
Lasserre Hierarchy

The Lasserre hierarchy [22] is a sequence of nested
semidefinite relaxations for certain 0 − 1 polynomial pro-
grams. These SDPs may be expressed as a system of con-
straints on the vectors {vI |I ⊆ [n]}. To obtain a relaxed
(non-integral) solution to the original problem, one takes
(v2

{1}, v
2
{2}, . . . , v

2
{n}). (For convenience, we will hence-

forth write vi1...is
instead of v{i1,...,is}.)

When the 0 − 1 polytope is the convex hull of all (in-
dicator functions of) independent sets in a hypergraph (or
graph) H = (V,E), the constraints in the kth level of the
hierarchy may be expressed as follows (see [21]):
ISk(H)

v2
∅ = 1 (1)

∀I, J, I ′, J ′ ⊆ V s.t.

|I| , |J | , |I ′| , |J ′| ≤ k

and I ∪ J = I ′ ∪ J ′ vI · vJ = vI′ · vJ ′ (2)

∀e ∈ E v2
e = 0 (3)

We will denote by MAX-ISk(H) the SDP

Maximize
∑

i ‖vi‖2 s.t. {vI}I satisfy ISk(H).

As shown in [21], these constraints imply vI = 0 for any
set I of at most k vertices containing at least one hyperedge.
As a relaxation of the integer program over 0 − 1 variables
{xi}, the vector vI may be interpreted as a representing the
value

∏
i∈I xi. However, it will be more useful to think

of {xi} as random 0 − 1 variables. We then think of the
PSD matrix M = (vI · vJ)I,J as the expectation over the
corresponding random 0−1 matrices, and the values vI ·vJ

represent the probability that xi = xj = 1 for all i ∈ I
and j ∈ J (in fact, if we limit ourselves to any fixed index
set of size ≤ k, then this interpretation is correct for the
kth level of the Lasserre hierarchy). The picture may be
completed (to include variables representing mixed {0, 1}
partial assignments) by defining, for all I ⊆ [n] and J ⊆
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{−i|i ∈ [n]},

vI∪J
def=

∑
J ′⊆{j|−j∈J}(−1)|J ′|vI∪J ′ .

The following lemma (whose proof is straightforward) re-
lates these variables to the above SDP.

Lemma 1. Constraints (1) and (2) above for k = 2l imply
all the constraints in ISl(V ′, E′) where V ′ = [n]∪{−i|i ∈
[n]}, and E′ = {(i,−i)|i ∈ [n]}.

As a thought experiment, we will always think of the
vectors vI as representing the distributions of the random
variables

∏
i∈I xi, as discussed above. This intuition will

allow us to deduce certain properties of the geometry, which
can then be proven rigorously using the Lasserre con-
straints (2). Let us consider the following crucial exam-
ple (which will also motivate the following lemma). Con-
sider some event A relating to partial assignments of {xi}
(e.g. “∀i ∈ I : xi = 1”). Suppose that Pr[A] = p
and that we have many events Bj , sub-events of A, such
that Pr[Bj |A] = q. Since most pairs of events can-
not be too anti-correlated, for most pairs Bj , Bl we have
Pr[Bj ∧ Bl|A] ≥ q2 − o(1). If we think of the vectors
representing these events, we have vBj

· vBl
≥ pq2 − o(1).

Since this is true for most pairs Bj , Bl, one would imagine
that they all share a common component of length

√
pq2.

That is, that there exists some unit vector v′A such that
vBj

· v′
A ≥

√
pq2. Similarly, if for some A′, a super-event

of A, we were guaranteed that the vectors vBj
had the form

vBj
=

√
p′ · vA′

‖vA′‖ + wBj
for some wBj

⊥vA′ , we could
argue that the vectors wBj

should have a common compo-

nent of length ≥
√

pq2 − p′. Using the Lasserre hierarchy,
we can guarantee the existence of such a vector, as demon-
strated by the following lemma (in this case think of the mu-
tually exclusive events “∀l ∈ Ii : xl = 1” and the respective
sub-events “(∀l ∈ I : xl = 1) ∧ (∀j ∈ J : xj = 1)”).

Lemma 2. Let {vI} be a set of vectors satisfying (2), let
subsets Ii ⊂ [n] and J ⊆ [n] of size at most k be such that
∀i, Ii∩J = ∅ and ∀i �= j, vIi

·vIj
= 0 and let pi = ‖vIi

‖2,

and qi = ‖vIi∪J‖2
/ ‖vIi

‖2. Then

1. There exists a unit vector x0 ∈ Span({vI |I ⊆ ⋃
i Ii})

such that x0 · vJ =
√∑

i piq2
i .

2. If, moreover, for every i there are subsets Iij satisfy-
ing Ii ⊆ Iij ⊆ [n] \ IJ such that the vectors vIij

are mutually orthogonal, and vIi
=

∑
j vIij

, then
if v′

J is the component of vJ orthogonal to x0 (i.e.
vJ =

√∑
i piq2

i x0 + v′
J ), then there exists a unit vec-

tor x′
0 ∈ Span({vI |I ⊆ ⋃

i,j Iij}) such that x′
0 · v′

J =√∑
i,j pijq2

ij −
∑

i piq2
i (where pij =

∥∥vIij

∥∥2
and

pijqij =
∥∥vIij∪J

∥∥2
).

Proof. (sketch) It suffices to check, by computing inner
products, and using constraint (2), that vJ =

∑
i qivIi

+ v′
J

(where v′
J ·vIi

= 0), and that for all i,
∑

j qijvIij
= qivIi

+

v′′
i , where v′′

i is a vector of length
√∑

j pijq2
ij − piq2

i or-

thogonal to vIij
for all j.

The above lemma motivates the following definition:

Definition 3. We will call a set of unit vectors X a ρ-cluster
if there exists a unit vector x0 such that x0 · x ≥ √

ρ for all
x ∈ X .

These clusters will be crucial in obtaining a more re-
fined analysis of rounding algorithms, as we shall see in
section 2.4.

2.2 SDP relaxations for MAX-IS in 3-
uniform hypergraphs

The relaxation proposed in [20] may be derived as fol-
lows. Given an independent set I ⊆ V in a 3-uniform hy-
pergraph H = (V,E), for every vertex i ∈ V let xi = 1
if i ∈ I and xi = 0 otherwise. For any hyperedge
(i, j, l) ∈ E it follows that xi + xj + xl ∈ {0, 1, 2} (and
hence |xi + xj + xl − 1| ≤ 1). Thus, we have the relax-
ation
KNS(H)

Maximize
∑

i ‖vi‖2 s.t. v2
∅ = 1 (4)

∀i ∈ V v∅ · vi = vi · vi (5)

∀(i, j, l) ∈ E ‖vi + vj + vl − v∅‖2 ≤ 1 (6)

One can check that in fact for k ≥ 3 constraint (6) is
implied by ISk(H).

2.3 SDP relaxation for 3-coloring

We reduce the 3-coloring problem to an Independent Set
problem as follows. Given a graph G = (V,E), construct
graph G′ = (V ′, E′) where V ′ = V × {R,B, Y } and
((i, C1), (j, C2)) ∈ E′ if (i, j) ∈ E and C1 = C2, or if i =
j and C1 �= C2. Note that any independent set of size |V | in
G′ induces a 3-coloring of G (since every vertex i ∈ V ap-
pears in exactly one of the three copies of V in G′). It is not
hard to see that if MAX-ISk(G′) = n, then in an optimal
solution, for all i ∈ V we have v∅ = v(i,R)+v(i,B)+v(i,Y ).
Moreover, since the constraints of ISk(G′) are symmetric
with respect to {R,B, Y }, for any matrix M ∈ ISk(G′),
the matrix 1

6

∑
π∈Sym({R,B,Y }

π(M) also satisfies ISk(G′),

where Sym(X) is the group of permutations on X , and
π(M) is defined as follows: π(M)I,J = Mπ(I),π(J) where
for any I ⊆ V ′, π(I) = {(i, π(C))|(i, C) ∈ I}. Thus, we
arrive at the following SDP relaxation for 3-coloring:
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3COLk(G)

{vI |I ⊆ V ′} ∈ ISk(G′) (7)

∀i ∈ V v∅ =
∑

C∈{R,B,Y }
v(i,C) (8)

∀π ∈ Sym({R,B, Y })
∀I, J ⊆ V ′, |I| , |J | ,≤ k vI · vJ = vπ(I) · vπ(J) (9)

We now show that the relaxation 3COL1(G) is equiv-
alent to the standard SDP relaxation for 3 coloring. This
will be useful later on, as we will use an SDP rounding al-
gorithm very similar to the ones in [16] and [3]. For all
i ∈ V , by constraints (2) (8) and (9), we have v∅ · v(i,R) =∥∥v(i,R)

∥∥2 = 1
3 . Thus every v(i,R) can be written

v(i,R) = 1
3v∅ +

√
2

3 ui, (10)

where ui is a unit vector orthogonal to v∅. We claim that
the vectors {ui} are a vector 3-coloring of G, that is, that
they satisfy

∀(i, j) ∈ E ui · uj = − 1
2 . (11)

Indeed, this follows immediately from (10), since vi,R ·
vj,R = 1

9v2
∅ + 2

9ui ·uj . It is not hard to see that one can sim-
ilarly construct a solution to 3COL1(G) given any vector
3-coloring {ui}.

2.4 Gaussian vectors and SDP rounding
Recall that the standard normal distribution has density

function 1√
2π

e−x2/2. A random vector ζ = (ζ1, . . . , ζn)
is said to have the n-dimensional standard normal distribu-
tion if the components ζi are independent and each have the
standard normal distribution. Note that this distribution is
invariant under rotation, and its projections onto orthogo-
nal subspaces are independent. In particular, for any unit
vector v ∈ �n, the projection 〈ζ, v〉 has the standard nor-
mal distribution. Moreover, for any orthogonal subspaces
U,W ⊂ �n, the projections of ζ onto U , W , respectively,
are independent.

We use the following notation for the tail bound of the

standard normal distribution: N(x) def=
∫ ∞

x
1√
2π

e−
t2
2 dt.

The following property of the normal distribution will be
crucial.

Lemma 4. For s > 0, we have

1√
2π

(
1
s − 1

s3

)
e−s2/2 ≤ N(s) ≤ 1√

2πs
e−s2/2.

The analysis of SDP rounding algorithms frequently in-
volves expressions of the form Prζ [∃x ∈ X : ζ · x ≥ t], for
random vector ζ as above, and set of unit vectors X . It is
easy to see that |X|N(t) is an upper-bound on this proba-
bility. However, when the set X is a ρ-cluster, we can give
a much better bound, as the following lemma shows.

Lemma 5. Let X be a ρ-cluster for some fixed constant
ρ ∈ (0, 1). Then for sufficiently large t, and all positive
s ≤ √

ρ, we have

Pr[∃x ∈ X : ζ · x ≥ t] ≤ |X| poly(t)N(t)1+(
√

ρ−s)2/(1−ρ)

+ 2N(st).

Proof. Suppose, w.l.o.g. that every x ∈ K is of the form
x =

√
ρx0 +

√
1 − ρx′ (if x0 ·x > ρ the following analysis

would only be improved). Note that since x′ · x0 = 0, the
random projection ζ · x0 is independent of all projections
ζ · x′. Thus, we can bound Prζ [∃x ∈ K : ζ · x ≥ t] from
above using a convolution on the random variables ζ · x0

and maxx∈K ζ · x′. In the following estimate the variable ξ
represents ζ · x0.

Prζ [∃x ∈ X : ζ · x ≥ t]

=
∫ ∞

−∞

1√
2π

e−ξ2/2Pr
[
∃x ∈ X : ζ · x′ ≥ t −√

ρξ√
1 − ρ

]
dξ

≤ 2
∫ ∞

0

1√
2π

e−ξ2/2Pr
[
∃x ∈ X : ζ · x′ ≥ t −√

ρξ√
1 − ρ

]
dξ

≤ 2
∫ st

0

e−ξ2/2

√
2π

|X|N
(

t −√
ρξ√

1 − ρ

)
dξ + 2

∫ ∞

st

e−ξ2/2

√
2π

dξ

(12)

≤ poly(t) · max
0≤a≤s

|X|N(t)a2+(1−√
ρa)2/(1−ρ) + 2N(st)

(13)

= poly(t) · max
0≤a≤s

|X|N(t)1+(
√

ρ−a)2/(1−ρ) + 2N(st)

= |X| · poly(t)N(t)1+(
√

ρ−s)2/(1−ρ) + 2N(st)

Inequality (12) is a union bound and (13) follows from
Lemma 4.

3 Finding large independent sets in 3-
uniform hypergraphs

We first review the algorithm and analysis given in [20].
Let us introduce the following notation: For all t ∈
{1, . . . , �log n�}, let St

def= {i ∈ V |t/ log n ≤ ‖vi‖2
<

(t + 1)/ log n}. Also, since ‖vi‖2 = v∅ · vi, we can write
vi = (v∅ · vi)v∅ +

√
v∅ · vi(1 − v∅ · vi)ui, where ui is a

unit vector orthogonal to v∅. They show the following two
lemmas, slightly rephrased here:

Lemma 6. If the optimum of KNS(H) is ≥ γn, there ex-
ists an index t ≥ γ log n − 1 s.t. |St| = Ω(n/ log2 n).

Lemma 7. For index t = β log n and hyperedge (i, j, k) ∈
E s.t. i, j, k ∈ St, constraint (6) implies

‖ui + uj + uk‖2 ≤ 3 + (3 − 6β)/(1 − β) + O(1/ log n).
(14)
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Using the above notation, we can now describe the
rounding algorithm in [20], which is applied to the subhy-
pergraph induced on St, where t is as in Lemma 6.

HIS-Round(H, {ui}, r)
• Choose ζ ∈ R

n from the n-dimensional standard
normal distribution.

• Let Vζ(r)
def= {i|ζ · ui ≥ r}. Remove all vertices

in hyperedges fully contained in Vζ(r), and return
the remaining set.

The expected size of the remaining independent
set can be bounded from below by E[|Vζ(r)|] −
3E[|e ∈ E : e ⊆ Vζ(r)|], since each hyperedge contributes
at most three vertices to Vζ(r). If hyperedge (i, j, k)
is fully contained in Vζ(r), then by Lemma 7 we have
ζ · ui+uj+uk

‖ui+uj+uk‖ ≥ (3
√

(1 − γ)/(6 − 9γ) − O(1/ log n))r.
By Lemma 4, and linearity of expectation, this means the
size of the remaining independent set is at least

Ω̃(N(r)n) − Õ(N(r)(3−3γ)/(2−3γ) |E|).

Choosing r appropriately then yields the guarantee given
in [20].

Theorem 8. Given a 3-uniform hypergraph H on n vertices
and m edges containing an independent set of size ≥ γn,
one can find, in polynomial time, an independent set of size
Ω̃(min{n, n3−3γ/m2−3γ}).

Note that m can be as large as Ω(n3), giving no non-
trivial guarantee for γ ≤ 1

2 . In fact, for γ = 1
2 , not only is

there no non-trivial approximation guarantee, the integrality
gap is Ω(n). To see this, note that taking v∅, u1, . . . , un to
be an orthonormal set, the vectors vi = 1

2v∅+ 1
2ui satisfy the

constraints of KNS(H), with
∑

i ‖vi‖2 = n
2 . This solution

is legal regardless of the underlying hypergraph.
To see why SDP hierarchies should be of some use in the

case of γ = 1
2 , suppose that the SDP solution derives from

some distribution on independent sets as discussed earlier.
Let S be an independent set chosen according to this distri-
bution. It is not hard to see that for γ = 1

2 , the only tight

case in the above analysis is when ‖vi‖2 = 1
2 for every ver-

tex i ∈ V , and vi · vj = vi · vk = vj · vk = 1
4 for every

hyperedge (i, j, k) ∈ E. This means that every vertex is
in S with probability 1

2 , and the vertices of any hyperedge
(i, j, k) are chosen to be in S pairwise independently. Since
all three vertices are never simultaneously in S, it must be
the case that k ∈ S precisely when exactly one of i, j is in
S. In particular, this means that for i, j, k, k′ ∈ V such that
(i, j, k), (i, j, k′) ∈ E, the vertices k and k′ are always in S
at the same time, which implies vk = v′

k.

Returning to the above analysis (for this particular
setup), fix i, j, and let Γ({i, j}) = {k|(i, j, k) ∈ E}.
Since ui, uj , uk are mutually orthogonal for (i, j, k) ∈ E,
we have Pr[(i, j, k) ⊆ Vζ(r)] = N(r)3. Therefore, the
expected number of hyperdges in Vζ(r) containing i and
j is N(r)3 |Γ({i, j})|, which in the worst case might be
Ω(N(r)3n). However since uk are all the same vector for
k ∈ Γ({i, j}), vertices i, j only participate simultaneously
in a hyperedge in Vζ(r) with probability N(r)3. Since there
are at most

(
n
2

)
vertex pairs, and each one contributes at

most two verices to Vζ(r), the expected number of vertices
participating in edges in Vζ(r) is at most N(r)3n2 (possi-
bly much less than the expected number of edges in Vζ(r)).
Therefore, choosing r such that N(r) = 1/

√
2n, the round-

ing produces an independent set of expected size Ω(
√

n).
Of course, this substantial improvement only occurs in

the tight case of the previous analysis. Once we slightly
relax the condition that all ‖vi‖2 = 1

2 or that for all edges
(i, j, k) we have vi · vj = 1

4 , we can no longer deduce that
(fixing a particular pair (i, j)) the vectors vk are all equal
for k ∈ Γ({i, j}). However, we can deduce that the vectors
vk should be highly clustered, using Lemma 2, and then we
may use Lemma 5 to obtain an improvement in the analysis
of the rounding algorithm.

We will now formalize this intuitive explanation. Our
main result of this section is the following improvement in
the integrality gap.

Theorem 9. There is some fixed constant ε > 0 such that
any 3-uniform hypergraph H on n vertices for which the
optimum of MAX-IS3(H) is at least ( 1

2 − ε)n contains an
independent set of size Ω(nε). Moreover, such an indepen-
dent set can be found in polynomial time.

Corollary 10. For some fixed ε > 0, there is a polynomial
time algorithm which, given an n-vertex 3-uniform hyper-
graph H containing an independent set of size ≥ (1

2 − ε)n,
finds an independent set of size Ω(nε) in H .

Proof of Theorem 9. Let {vI |I ⊆ V, |I| ≤ 3} be a vector
solution satisfying IS3(H) s.t.

∑
i ‖vi‖2 ≥ ( 1

2 − ε)n. By
Lemma 6, there is some some subset of vertices S ⊆ V
of size Ω̃(n) and some γ ≥ 1

2 − ε s.t. for all vertices
i ∈ S, |v0 · vi − γ| ≤ 1/ log n. For the sake of sim-
plicity, let us assume that v0 · vi = γ for all i ∈ [n]
(this will only affect the analysis by an additional poly-
logarithmic factor). Let r be such that N(r) = n−(1−ε).
Note that if ‖ui + uj + uk‖2 ≤ 3 − δ then arguing as be-
fore Prζ [i, j, k ∈ Vζ(r)] = Õ(N(r)9/(3−δ)). Let us de-

fine E−
δ

def= {(i, j, k) ∈ E| ‖ui + uj + uk‖2 ≤ 3 − δ},

and E+
δ

def= E \ E−
δ . When ε is sufficiently small, there

is some δ = O(ε) such that E[
∣∣e ∈ E−

δ : e ⊆ Vζ(r)
∣∣] ≤

Õ(N(r)9/(3−δ)n3) = o(N(r)n). Therefore, we may as-
sume that all hyperedges are in fact in E+

δ . In particular, for

695695



every such hyperedge this implies ui ·uj +ui ·uk+uj ·uk ≥
−δ/2, and so, since γ ≥ 1

2 − ε,

vi ·vj +vi ·vk +vj ·vk ≥ 3γ2+(γ−γ2)
δ

2
≥ 3

2
γ−η, (15)

for some η = O(δ + ε) = O(ε).
Now, fix i, j ∈ [n], and let k ∈ [n] be such that

(i, j, k) ∈ E+
δ . Note that (by constraint (2))

∥∥v{i,−j}
∥∥2 =

‖vi − vij‖2 = γ−vi ·vj , and similarly
∥∥v{j,−i}

∥∥2 = γ−vi ·
vj . Crucially, we also have vk · v{i,−j} = vk · (vi − vij) =
vi · vk (since by constraint (3), vk · vij = 0), and simi-
larly vk · v{j,−i} = vj · vk. Therefore, by Lemma 2 (let-
ting p0 = v2

∅ = 1, q0 = v∅ · vk = γ, p0i = γ − vi · vk,
p0iq0i = vi ·vk, and similarly for p0j , q0j) there is some unit
vector x′

0 ∈ Span({vI |I ⊆ {i, j}}) such that v∅ · x′
0 = 0,

and for all k as above,

x′
0 ·

√
γ − γ2uk ≥

√
(vi · vk)2

γ − vi · vj
+

(vj · vk)2

γ − vi · vj
− γ2.

(16)
By (15), we have

(vi · vk)2 + (vj · vk)2 ≥ (vi · vk + vj · vk)2/2

≥ (3γ/2 − vi · vj)2/2 − O(ε)
= γ(γ − vi · vj)

+ (γ − 2vi · vj)2/8 − O(ε).

Together with (16), this implies

x′
0 · uk ≥

√
1 +

(γ − 2vi · vj)2 − O(ε)
8(γ − γ2)(γ − vi · vj)

(17)

This implies that
∣∣vi · vj − γ

2

∣∣ = O(
√

ε) (since other-
wise, we would have x′

0 · uk > 1), which in turn implies
that |ui · uj | = O(

√
ε) (assuming

∣∣γ − 1
2

∣∣ = O(
√

ε)).
By symmetry, we also have max{|ui · uk| , |uj · uk|} =
O(

√
ε). Thus, ‖ui + uj + uk‖2 = 3 − O(

√
ε), and let-

ting ũk = (ui + uj + uk)/ ‖ui + uj + uk‖, the vectors
{uk} are a (1− ε′)-cluster for some ε′ = O(

√
ε) (by (17)).

Note that if (for hyperedge (i, j, k)) i, j, k ∈ Vζ(r), then
ζ · ũk ≥ √

3 − O(
√

ε). Therefore, by Lemma 5 (with
s =

√
1 − ε′ − √

ε′/3), Lemma 4, and choice of r,

Prζ [∃k : (i, j, k) ∈ Vζ(r)]

≤ Prζ [∃k : ζ · ũk ≥
√

3 − O(
√

ε)]

≤ n · poly(r)N((
√

3 − O(
√

ε))r)1+ε′/(3ε′)

+ N((1 − O(
√

ε′))(
√

3 − O(
√

ε))r)

= poly(r)N(r)−1/(1−ε)N((
√

3 − O(
√

ε))r)4/3

+ N((
√

3 − O(
√

ε′))r)

= N(r)3−O(
√

ε′) = N(r)3−O( 4√ε).

Therefore, the expected number of vertices participating in
edges contained in Vζ(r) is at most n2N(r)3−O( 4√ε) =
o(N(r)n) for sufficiently small ε > 0, and the theorem
follows.

4 Coloring 3-colorable graphs

As is standard, we assume that in order to find colorings
with Õ(f(n)) colors, it suffices to find independent sets of
size n/f(n).

We concentrate only on the case where there is a bound
∆ on the maximum degree (see below). As was discussed
in [3], one can use the technique of [8] to obtain an algo-
rithm with approximation guarantee in terms of n:

Theorem 11. Let A be a polynomial time algorithm that
takes an n-vertex 3-colorable graph with maximum de-
gree at most ∆ as input, and returns an independent set
of size ≥ n/f(n,∆) (where f is monotonically increas-
ing in n and ∆). Then there is a polynomial time algo-
rithm which, for any n-vertex 3-colorable graph, finds an
Õ(min1≤∆≤n(f(n/4, 2∆) + (n/∆)3/5)) coloring.

The KMS rounding algorithm is as follows:

KMS(G, {ui}, r)
• Choose ζ ∈ R

n from the n-dimensional standard
normal distribution.

• Let Vζ(r)
def= {i|ζ · ui ≥ r}. Return all i ∈ Vζ(r)

with no neighbors in Vζ(r).

Theorem 12 (KMS). For any graph G on n vertices with
maximum degree ≤ ∆ and vector 3-coloring {ui} of G,
there exists some r = r(n,∆) > 0 such that the ex-
pected size of the independent set returned by algorithm
KMS (G, {ui}, r) is Ω̃(∆−1/3 · n).

To describe our algorithm, we need one more piece of
notation. Given a solution {vI} of 3COL3(G), and vertices
i, k ∈ V s.t. v(i,R),(k,R) �= 0, define wik to be the unit vector
satisfying

v(i,R),(k,R) =(
∥∥v(i,R),(k,R)

∥∥ /
∥∥v(i,R)

∥∥)2v(i,R) (18)

+

√√√√∥∥v(i,R),(k,R)

∥∥2 −
∥∥v(i,R),(k,R)

∥∥4∥∥v(i,R)

∥∥2 wik.

By (2),
∥∥v(i,R),(k,R)

∥∥2 = v(i,R),(k,R) · v(i,R), hence such a
vector exists, and is orthogonal to v(i,R).

Our algorithm is as follows:
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KMS2(G)

1. Solve the SDP 3COL3(G) to obtain vectors {vI}.

2. For “all” r > 0,

• Choose ζ ∈ R
n from the n-dimensional stan-

dard normal distribution.

• Let Vζ(r)
def= {i|ζ · ui ≥ r} (ui is as in (10)).

Pick any edge (i, j) with both endpoints in
Vζ(r), and eliminate both i and j. Repeat un-
til no such edges are left. Let V ′

ζ (r) be the
remaining independent set.

3. For all i, let
Vi =

{
k|∥∥v(i,R),(k,R)

∥∥2
> 1

6 − 1/
√

log log n
}

,

and obtain independent set Wi from
KMS(Vi, {wik|k ∈ Vi} ,

√
log n/(log log n)1/4).

4. Output the largest set among V ′
ζ (r), Wi.

Remark 13. Equivalently, in step 2 we can first choose ζ,
and then enumerate over all relevant values of r (that is,
over ri = ζ ·ui). However, for the purposes of the analysis,
we consider the first formulation.

Note that in KMS2, the set V ′
ζ (r)contains the set re-

turned by KMS(G, r), so Theorem 12 holds also for KMS2.
Step 2 is the rounding algorithm KMS ′ proposed in [3].
As mentioned earlier, it was shown in [16] that for vec-
tor 3-colorable graphs on n vertices with maximum degree
∆, KMS produces an independent set of size Ω̃(n∆−1/3)
(and thus an Õ(∆1/3)-coloring). We quantify the improve-
ment in our analysis of KMS2 using the following definition
from [3].

Definition 14. Given a graph G with maximum degree
∆, the parameter r > 0 is at most c-inefficient if ∆ ≤
N(

√
3r)−(1+c).

Note that by Lemma 4, if r > 0 is exactly c-inefficient,
then N(r) = Θ̃(∆− 1

3+3c ). Thus, our objective is to find the
largest possible c = c(∆) for which KMS2 is guaranteed
to return an independent set of size Ω(N(r) · n) for a c-
inefficient threshold r. Using this terminology, we give the
following explicit guarantee for the performance of KMS2.

Theorem 15. For every τ > 6
11 there exists c1(τ) > 0 such

that for 0 < c < c1(τ), and any n vertex graph G with
maximum degree ≤ nτ , if the parameter r is (at most) c-
inefficient for G, then KMS2(G) returns an independent set
of size Ω(N(r)n).

Furthermore, c1(τ) satisfies

c1(τ) def= min
{

1
2
, sup

{
c

∣∣∣∣ min
0≤α≤ c

1+c

λc(α) > 0
}}

,
(19)

where λc(α) def= 7/3 + c + α2/(1 − α2) − (1 + c)/(τ) −(√
(1 + α)/2 +

√
c(1 − α)/2

)2

.

Corollary 16. For any n-vertex 3-colorable graph G with
maximum degree ≤ ∆ = n0.6546, KMS2(G) returns an in-
dependent set of size Ω(∆−0.3166 · n).

Together with Theorem 11, this proves the following.

Theorem 17. For 3-colorable graphs, one can find an
O(n0.2072) coloring in polynomial time.

4.1 Overview of analysis
In this section we give an informal description of the

analysis of KMS2, which will be formalized in the next sec-
tion. Following [3], our analysis will focus on the vectors
u′

ij , which, for every edge (i, j) ∈ E, are defined to be the
unit vectors satisfying

uj = − 1
2ui +

√
3

2 u′
ij . (20)

Since ui · uj = − 1
2 , we have u′

ij · ui = 0. The following
lemma from [3] (adapted to the above notation) relates these
vectors to the performance of the rounding algorithm.

Lemma 18. For all nodes i ∈ V ,

Pr[i is eliminated |i ∈ Vζ(r)] ≤ Pr[∃j : ζ · u′
ij ≥

√
3r].

Our goal is to show that either the probability on the
right is small for many vectors (and thus, in expectation
an Ω(N(r))-fraction of them will be in V ′

ζ (r)), or we can
extract a large independent set from the 2-neighborhood
Γ(Γ(i)) of some vertex i (The second part is covered by
step 3 in KMS2). For the purposes of the current discus-
sion, we will make a few simplifying assumptions. First, we
assume that the SDP solution corresponds to a distribution
over legal 3-colorings. Let col(·) be a random assignment of
3-colorings chosen according to this distribution. Then, for
example, ui ·uj = Prcol[col(i) = col(j)]− 1

2Prcol[col(i) �=
col(j)]. Secondly, we assume that the vectors do not display
any statistically significant behavior other than the above
constraints. This roughly corresponds to the case where
the parameter r is chosen such that N(r) ≈ ∆−1/3, and
step 2 fails (in fact, we make the stronger assumption that
the right-hand-side of the inequality in Lemma 18 is large
for all i ∈ V ).

We would first like to show that joint neighborhoods (in-
tersections of two neighborhoods) are clustered. Consider
two vertices j, j′ ∈ V which participate in some joint neigh-
borhood. Conditioning on the choice of color col(j), any
neighbor of j is assigned a random choice of one of the
two remaining colors. Thus, our assumption about statisti-
cally significant behavior implies that for any two distinct
neighbors i, k ∈ Γ(j) (and similarly for i, k ∈ Γ(j′)),
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Pr[col(i) = col(k)] ≈ 1
2 . Now consider i and k as fixed,

and think of j, j′ as a random pair of vertices in Γ(i)∩Γ(k).
Then col(j) = col(j′) whenever col(i) �= col(k) (since
in a legal 3-coloring, the joint neighborhood of two dis-
tinctly colored vertices must be monochromatic). On the
other hand, conditioning on the event col(i) = col(k) = C
for some color C, we have Pr[col(j) = col(j′)|col(i) =
col(k) = C] ≥ 1

2 − o(1) for many pairs j, j′ ∈ Γ(i)∩ Γ(k)
(see the discussion preceeding Lemma 2). Summarizing,
for such pairs we have

Pr[col(j) = col(j′)] ≥ Pr[col(i) �= col(k)]
+ (1/2 − o(1))Pr[col(i) = col(k)]

≈ 1
2 + 1

2 ( 1
2 − o(1)) = 3

4 − o(1).

Now, by definition of col(·), this implies that uj · uj′ =
Pr[col(j) = col(j′)] − 1

2Pr[col(j) �= col(j′)] ≥ 5
8 − o(1).

This, in turn, implies u′
ij · u′

ij′ ≥ 1
2 − o(1), so the vec-

tors {u′
ij |j ∈ Γ(i) ∩ Γ(k)} form a 1/2 − cluster. This

intuition can be formalized using Lemma 2. The cardinal-
ity of such clusters must be small, since otherwise, by the
bound in Lemma 5, they would have a disproportionately
small contribution to the probability in Lemma 18. This is
made precise in Lemma 24, which in this case implies that
for i, k ∈ V as above, |Γ(i) ∩ Γ(k)| ≤ √

∆.
This suffices to show that the number of vertices at dis-

tance 2 from i is large. Indeed,

∆2 = |{(j, k) ∈ E|j ∈ Γ(i)}| =
∑

k∈Γ(Γ(i)) |Γ(i) ∩ Γ(k)|
≤ |Γ(Γ(i))|

√
∆,

and thus |Γ(Γ(i))| ≥ ∆3/2. On the other hand, as we men-
tioned earlier, for most k ∈ Γ(Γ(i)), Pr[col(i) = col(k)] ≈
1
2 . Thus the expected number of vertices in Γ(Γ(i)) with the
same color as i is 1

2 |Γ(Γ(i))|. In particular, the set Γ(Γ(i))
contains an independent set which is nearly half of all its
vertices. In this case we can use any of a number of Vertex
Cover approximations to extract an independent set of size
Ω̃(|Γ(Γ(i))|) = Ω̃(∆3/2). This gives the following trade-
off: For r s.t. N(r) ≈ ∆−1/3, either step 2 produces an
independent set of size N(r)n ≈ ∆−1/3n, or step 3 pro-
duces an independent set of size Ω̃(∆3/2).

Slightly relaxing the above argument (by decreasing
r, hence increasing the size of the independent set when
step (2) succeeds), gives a better trade-off in the worst case,
as long as ∆−1/3n < ∆3/2, i.e. ∆ > n6/11. However, de-
creasing r introduces error-terms at every step of the argu-
ment, possibly decreasing the guaranteed size of Γ(Γ(i)).
The subtle trade-off between these two parameters is the
main focus of the analysis.

4.2 Analysis of current improvement
In this section we prove Theorem 15. The goal of the

analysis is to show that if KMS2 does not find a large inde-

pendent set in step (2), then one of the sets Vi is large. We
first note that this is sufficient.

Lemma 19. Let Vi be as in algorithm KMS2. Then
KMS(Vi, {wik|k ∈ Vi} ,

√
log n/(log log n)1/4) returns an

independent set of size Ω(|Vi|N(
√

log n/(log log n)
1
4 )) =

Ω̃(|Vi|N(n−1/(2
√

log log n))).

Proof. For any k, k′ ∈ Vi s.t. (k, k′) ∈ E we have
v(i,R),(k,R) · v(i,R),(k′,R) = 0, and hence by equa-

tion (18), wik · wik′ = −∥∥v(i,R),(k,R)

∥∥2
/(

∥∥v(i,R)

∥∥2 −∥∥v(i,R),(k,R)

∥∥2) < −1 + O(1/
√

log log n). In partic-

ular, ‖wik + wik′‖2 = O(1/
√

log log n). Thus, for
r =

√
log n/(log log n)1/4, the probability that both

k, k′ ∈ Vζ(r) is at most Prζ [ζ · (wik + wik′) ≥ 2r] =
N(2r/ ‖wik + wik′‖) = o(N(r)/n2), where the final
equality follows from Lemma 4. In particular, the ex-
pected number of edges contained in Vζ(r) is at most
o(N(r)), whereas the expected number of vertices is
Ω(|Vi|N(r)).

The following theorem, together with Lemma 19 imme-
diately implies Theorem 15.

Theorem 20. For every τ > 6
11 and 0 < c < c1(τ), there

exists some ε = ε(τ, c) > 0 s.t. for sufficiently large n,
any n vertex graph G with max degree ≤ nτ , and r s.t.
N(

√
3r)−(1+c), either

1. Step (2) of KMS2(G) returns an independent set of ex-
pected size Ω(N(r)n), or

2. There exists some vertex i for which |Vi| ≥
(N(r)n1+ε).

The rest of this section is devoted to proving Theo-
rem 20. We will use the following definition from [5]
and [3].

Definition 21. A set of unit vectors {x1, . . . , xk} is said to
be a (t, δ)-cover, if for ζ ∈ R

n chosen from the standard
normal distribution, Pr[∃i : ζ · xi ≥ t] ≥ δ.
The cover {x1, . . . , xk} is said to be (at most) c-inefficient,
if k ≤ N(t)−(1+c).

To motivate the above definition, we note that, by
lemma 18, for any vertex i for which Prζ [i ∈ V ′

ζ (r)] ≤
1
2N(r), we have a (1

2 ,
√

3r)-cover {u′
ij}j , and moreover,

this cover is at most c-inefficient if the parameter r is c-
inefficient for G. We further refine the above definition as
follows:

Definition 22. A set of unit vectors {x1, . . . , xk} is
said to be a uniformly c-inefficient (t, δ)-cover, if k ≥
δN(t)−(1+c), and every subset S ⊆ [k] is itself a
(t, N(t)1+c |S|)-cover.
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Using this definition, we will show that every cover
which has bounded inefficiency, contains a large core which
has bounded uniform inefficiency.

Lemma 23. Let X be a c-inefficient (t, δ)-cover. Then

1. For some 0 ≤ b ≤ c + O(ln(1/δ)/t2), there exists
a subset X ′ ⊆ X which is a uniformly b-inefficient
(t,Ω(δ/t2))-cover.

2. If, in addition, X is a ρ-cluster and δ = Ω(1/poly(t)),
then b ≥ ρ/(1 − ρ) − Õ(1/t).

Proof. We assign to the elements in X some additive mea-
sure µ(·) s.t. µ(X) ≥ δ and every subset S ⊂ X is a
(t, µ(S))-cover, i.e. Prζ [∃x ∈ S : ζ · x ≥ t] ≥ µ(S). A

natural choice is given by µ(x) def= Prζ [ζ ·x ≥ t and ζ ·x =
maxx′∈X ζ · x′]. Let X+ = {x|µ(x) > δN(t)1+c/2}, and
X− = X\X+. Then, by the efficiency and cover properties
of X , we have

δ ≤ µ(X) = µ(X−) + µ(X+) ≤ 1
2 |X| δN(t)1+c + µ(X+)

≤ δ/2 + µ(X+).

Thus, µ(X+) ≥ δ/2, and, by Lemma 4 and definition of
X+, for every x ∈ X+, µ(x) = N(t)1+bx for some bx ∈
[0, c+O(ln(1/δ)/t2]. Divide this range into t2 subintervals
Ii of length (c + O(ln(1/δ)/t2))/t2, and divide X+ into
bins accordingly, so that x ∈ Xi iff bx ∈ Ii. Thus, some
such bin must have measure µ(Xi) = Ω(δ/t2). This Xi

satisfies the required properties in part (1), where the lower
bound on |Xi| follows immediately from the upper bound
on µ(x) for all x ∈ Xi.

For part (2), let Ii = [b1, b2] be the interval chosen
above, and Xi the corresponding subset of X+. First,
note that, by definition of Xi, N(t)1+b2 |Xi| ≤ µ(Xi) ≤
1, and thus |Xi| ≤ N(t)−(1+b2). Let s be such that
N(st) = o(δ/t2). By Lemma 4 there is some s =
O(

√
log(t2/δ)/t) = O(

√
log t/t) satisfying this property.

Therefore, by Lemma 5, we have

δ/t2 ≤ µ(Xi)

≤ poly(t)N(t)−(1+b2)+1+ρ/(1−ρ)−O(s) + o(δ/t2).

And so the desired lower bound on b follows, since

N(t)−b2+ρ/(1−ρ)−O(
√

log t/t) ≥ 1
poly(t) = N(t)O(log t/t2).

We now show that uniformly efficient covers of cardi-
nality k do not contain ρ-clusters significantly larger than
k1−ρ.

Lemma 24. Let X be a uniformly b-inefficient (t, δ)-cover,
then for all ρ ≥ b/(1+b) any ρ-cluster in X has cardinality
at most O(poly(t)N(t)−(

√
1−ρ+

√
bρ)2).

Proof. Let K ⊂ X be a ρ-cluster of cardinality N(t)−β ,
and let s =

√
ρ−√

b(1 − ρ) − η for some η = o(1) (spec-
ified later). Then by Lemma 5 (with the above choice of s),
we have

Prζ [∃x ∈ K : ζ · x ≥ t] ≤ poly(t)N(t)−β+1+b+O(η)

+ 2N(st).

Thus, by the uniform b-inefficiency assumption, and by
Lemma 4, for some η = O(

√
log t/t2), we have

N(t)−β+1+b ≤ Prζ [∃x ∈ K : ζ · x ≥ t]

≤ o(N(t)−β+1+b)

+ poly(t)N(t)(
√

ρ−
√

b(1−ρ))2 .

Hence, the required bound on |K| = N(t)−β follows im-
mediately.

We are now ready to prove Theorem 20.

Proof of Theorem 20. If for at least n/2 vertices i ∈ V
we have Prζ [i ∈ V ′

ζ (r)] ≥ 1
2N(r), then clearly, by lin-

earity of expectation, we find an independent set of ex-
pected size Ω(N(r)n) in step (2). Assume this is not
the case. Then we can prune as in Lemma 25. Let
G′ = (V ′, E′) be the remaining graph, and fix some
vertex i ∈ V ′. Then, by Lemma 25, we have that
{u′

ij |j ∈ ΓG′(i)} and and the sets {u′
jk|k ∈ ΓG′(j)} for

every j ∈ ΓG′(i) are all uniform
(√

3r, 1
8 − O

(
1

log r

))
-

covers which are at most c-inefficient. Moreover, there
exists some constant C > 0 such that the sets Uji ={

u′
jk

∣∣∣− C
r2 ≤ u′

ji · u′
jk ≤ c

1+c + C
log r

}
(for every j ∈

ΓG′(i)) are
(√

3r,Ω( 1
r3 )

)
-covers. Note that for all such j,

{k|u′
jk ∈ Uji} ⊆ Vi. Therefore, we need to give a lower

bound on
∣∣∣⋃j∈ΓG′ (i){k|u′

jk ∈ Uji}
∣∣∣.

Now, subdivide the interval [− C
r2 , c

1+c + C
log r ] into O(r)

subintervals Il of length 1/r. For every j ∈ ΓG′(i) there
is some l = l(j) such that the set {u′

jk|u′
ji · u′

jk ∈ Il(j)}
is a (

√
3r,Ω(1/r4))-cover. Moreover, there is some l0 such

that the set U ′
i = {u′

ij |l(j) = l0} is a (
√

3r,Ω(1/r))-cover.
Let α be such that Il0 = [α, α + 1/r). By Lemma 23,
there is some subset U ′′

i ⊆ U ′
i which is a uniformly b-

inefficient (
√

3r,Ω(1/r3))-cover for some 0 ≤ b ≤ c +
o(1). Similarly, for every j ∈ U ′′

i , there is some set Wj ⊂
{u′

jk|u′
ji · u′

jk ∈ Il(0)} which is a uniformly aj-inefficient

(
√

3r,Ω(1/r5))-cover, where aj ≥ α2/(1 − α2) − o(1)
(since the sets {u′

jk|u′
ji · u′

jk ∈ Il0} are α2-clusters for all
j ∈ ΓG′(i)). Let us summarize the situation:

1. U ′′
i is a uniformly b-inefficient (

√
3r, Ω(1/r3))-cover

for some 0 ≤ b ≤ c + o(1).
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2. ∀j ∈ U ′′
i , Wj is a uniformly aj-inefficient

(
√

3r,Ω(1/r5))-cover for some aj ≥ α2

1−α2 − o(1).

3. ∀j, k s.t. u′
jk ∈ Wj , v(i,R) · v(k,R) ∈ [(1 + α)/6, (1 +

α)/6 + o(1)].

4. −o(1) ≤ α ≤ c/(1 + c) + o(1).

Property 3 follows easily from the definition of {u′
jk}.

However, for the sake of simplicity, let us assume that for
all such j, k,

∥∥v(i,R),(k,R)

∥∥2 = v(i,R) · v(k,R) = 1+α
6 , as the

error term will have a negligible effect. By constraint (9),
this also implies

∥∥v(i,B),(k,B)

∥∥2 =
∥∥v(i,Y ),(k,Y )

∥∥2 =
(1 + α)/6. Moreover, since (as can be easily checked)∥∥v(i,B)

∥∥2 =
∑

C∈R,B,Y

∥∥v(i,B),(k,C)

∥∥2
, we have (again

by (9)),
∥∥v(i,B),(k,Y )

∥∥2 =
∥∥v(i,Y ),(k,B)

∥∥2 = (1 −
α)/12. Furthermore, for j ∈ Γ(i) ∩ Γ(k) and
(C1, C2) ∈ {(B, Y ), (Y,B)}, we have v(i,C1),(k,C1) ·
v(j,R) = 1

2

∥∥v(i,C1),(k,C1)

∥∥2
, and v(i,C1),(k,C2) · v(j,R) =∥∥v(i,C1),(k,C2)

∥∥2
. Finally, we note that for all (i, j) ∈ E,

v(j,R) = 1
2 (v(i,B)+v(i,Y ))+ 1√

6
u′

ij (by definition of ui, u
′
ij ,

and by constraint (8)). We now fix i, k ∈ [n] as above (i.e.
v(i,R) · v(k,R) = (1 + α)/6), and apply Lemma 2, where

for all C1, C2 ∈ {B, Y }, we let pC1 =
∥∥v(i,C1)

∥∥2 = 1/3,

pC1qC1 = v(i,C1) · v(j,R), pC1,C2 =
∥∥v(i,C1),(k,C2)

∥∥2
, and

pC1,C2qC1,C2 = v(i,C1),(k,C2) · v(j,R). Thus, there is some
unit vector x′

0 ∈ Span({vI |I ⊆ {i, k}×{B, Y }}) such that

x′
0 · 1√

6
u′

ij =
√

2 · 1+α
6 · ( 1

2

)2 + 2 · 1−α
12 − 2 · 1

3 · ( 1
2

)2

=
√

(1 − α)/12.

Thus, for all k, the set {u′
ij ∈ U ′′

i |u′
jk ∈ Wj}

is in fact a (1 − α)/2-cluster, and so by property 1

above and Lemma 24, we have
∣∣∣{u′

ij ∈ U ′′
i |u′

jk ∈ Wj}
∣∣∣ ≤

N(
√

3r)−(
√

(1+α)/2+
√

b(1−α)/2)2−o(1). Hence,∑
j:u′

ij∈U ′′
i

|Wj | =
∣∣{(j, k)|u′

ij ∈ U ′′
i and u′

jk ∈ Wj}
∣∣

≤
∣∣∣ ⋃

j∈U ′′
i

{k|u′
jk ∈ Wj}

∣∣∣
× N(

√
3r)−

(√
(1+α)/2+

√
b(1−α)/2

)2−o(1)

Yet, by properties 1 and 2,
∑

j:u′
ij∈U ′′

i
|Wj | ≥

N(
√

3r)−(1+b)−(1+α2/(1−α2))+o(1).
Thus we have shown∣∣∣ ⋃

j∈U ′′
i

{k|u′
jk ∈ Wj}

∣∣∣ ≥ N(
√

3r)−(λb(α)+ 1
3−(1+b)/τ)+o(1).

(21)

As a final simplification, we note that the function above is
monotonically decreasing in b for all b ≤ (1 − α)/(1 + α).
This is consistent with the range of b (up to o(1)), since
the fact that c ≤ 1

2 and property 4 imply (1 − α)/(1 +
α) ≥ c. Therefore, w.l.o.g. b = c. Substituting b = c
in (21), by our choice of c, and the inefficiency of r, we have

that for some constant ε′ > 0,
∣∣∣⋃j∈U ′′

i
{k|u′

jk ∈ Wj}
∣∣∣ ≥

N(
√

3r)1/3−ε′+o(1)n.
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A Pruning efficient covers
We use the following lemma from the extended version

of [3]. For completeness, the proof will appear in the full
version of this paper.

Lemma 25. For any r, δ > 0, if in step 2 of KMS2(G)

Pr[x is eliminated | i ∈ Vζ(r)] ≥ δ

for at least n/2 vertices i ∈ V , and r is c-inefficient for
G, then there is a non-empty subgraph G′ = (V ′, E′) of
G such that for all j ∈ V ′ we have (for some universal
constant C):

1. {u′
jk|k ∈ ΓG′(j)} is a (

√
3r, δ

4 − O(1/ log r))-cover.

2. For every i ∈ ΓG′(j) the set{
u′

jk

∣∣∣∣−C

r2
≤ u′

ji · u′
jk ≤ c

1 + c
·
(

1 +
C

log r

)}

is a
(√

3r, Ω( 1
r3 )

)
-cover.
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