CS 5959 — Writing Solid Code | Fall 2015
Dec-7

Lecture 11
Checking Concurrent Prgms

Zvonimir Rakamaric¢
University of Utah

Announcements

» Student course feedback

» Last homework is due Thu evening
Submit your solution to github

» SAT competition

Deadline is noon tomorrow (Tue)

We will use your last commit or message me
commit hash

» Visited Univ. of Utah data center — cool!

» Last class on Wed

Announcing results of the competition
Pizza party

A long time ago (in a galaxy far, far away)...

» Doubling of computing performance every two
years
Moore’s Law
2X transistors every 2 years

Dennard scaling
Transistors will be faster and lower energy

» Computer scientists and practitioners alike took for
granted that their scaling problems would be solved
If they simply waited a year or two

Computing Revolution
10,000,000 ’
Intel CPU Trends]
100,000 (sources: Intel, Wikipedia, K. 0!ukotun) - D ennar d + M oore
= 2x performance
every 2 years
0 [’P"'/C'“r - Chart originally from The Free Lunch Is

Over: A Fundamental Turn Toward

1970 1975 1980 1985 1990 1995 2000 2005 2010 Concurrency in Software, 2009

Why Multicore In PCs?

» We were forced to multicore when Dennard
scaling broke down around a decade ago

Could not increase frequency any more, but we
could still put more transistors on chips

» Moore’s law

The number of transistors in chips doubles every
two years

Seems to be failing too

[http://www.networkworld.com/article/2949034/]
Entering dark silicon era

Approximate heterogeneous computing

Today Concurrency Is Pervasive

» Old problem of computer science
Since ancient supercomputers

» Today
Multi-cores even in cell phones
Many-cores in desktops

» Most programs are concurrent
At least the ones you care about

Many Paradigms, Languages, Libraries

» MPI

» Pthreads

» OpenMP, CUDA, OpenCL
» Cilk

» Chapel

» Erlang

» Scala, Java, C#

» GO

#include <pthread.h>
#include <stdio.h>

int Global;

void *Threadl(void *x) {
Global++;
return NULL;

}

void *Thread2(void *x) {
Global--;
return NULL;

}

int main() {
pthread t t[2];
pthread create(&t[0], NULL, Threadl, NULL);
pthread create(&t[1], NULL, Thread2, NULL);
pthread join(t[©], NULL);
pthread join(t[1], NULL);

Concurrency Is Hard |

» Inefficient (dumb) concurrency is easy
Big fat lock around everything
Poor performance

» Efficient concurrency is hard

» A concurrent program should
Function correctly
Maximize throughput
Finish as many tasks as possible

Minimize latency
Respond to reguests as soon as possible

While handling nondeterminism in the environment

Concurrency Is Hard |

» Huge number of possible thread interleavings
(or schedules)

» How many interleavings are possible in a
concurrent program with n threads where each
thread has k instructions?

(N*Kk)! / (K1)" > (NN

» Exponential in both n and k!
» Example: 5 threads with 5 instruction each

25! /51> =6.2336074e+14
= 623 trillion interleavings

Concurrency Is Hard Il

» Concurrent executions (thread interleavings)
are highly nondeterminisitic

» Stress testing

Trying to explore many different thread
Interleavings by creating hundreds of threads

» Stress testing Is highly inefficient

Some concurrency bugs occur only in certain
thread interleavings
Finding the “right” thread interleaving is pure luck
No notion of coverage
Running for days, even months

Concurrency Bugs

» Rare thread interleavings result in Heisenbugs
Difficult to find, reproduce, and debug

» Observing the bug can *fix” it

E.qg., likelihood of interleavings changes when you
add printf statements

» A huge productivity problem

Developers and testers can spend weeks chasing
a single Heisenbug

Common Concurrency-Related Issues

» Data races

» Atomicity violations

» Assertion violations due to thread interleavings
» Wrong result or crash

» Non-determinism

Data Race

» Data race Is a simultaneous (concurrent)
access to the same memory location by
multiple threads, where at least one of the
accesses modifies the memory location

» Important class of bugs and the main focus on
this lecture

int Global;

void *Threadl(void *x) {
Global++;
return NULL;

}

void *Thread2(void *x) { Does this assertion always hold?
Global--;

return NULL;
}

int main() {
pthread t t[2];
pthread create(&t[0], NULL, Threadl, NULL);
pthread create(&t[1], NULL, Thread2, NULL);
pthread join(t[©], NULL);
pthread join(t[1], NULL);
assert(Global == 0);

Data Race

» How would you test your concurrent program
for data races?

Short Break: AptLab Tsan VM

» Goto

» Click on “Change Profile” and select “tsan_vm”

https://www.aptlab.net/
https://www.aptlab.net/

int Global;

void *Threadl(void *x) {
int yl1 = Global;

y1l++;
Global = y1;
return NULL;
}
void *Thread2(void *x) { Does this assertion always hold?
int y2 = Global;
y2--;
Global = y2;
return NULL;
}

int main() {
pthread t t[2];
pthread create(&t[0], NULL, Threadl, NULL);
pthread create(&t[1], NULL, Thread2, NULL);
pthread join(t[@], NULL);
pthread join(t[1], NULL);
assert(Global == 0);

int Global;

void *Threadl(void *x) {
Global = 1;
return NULL;

¥

void *Thread2(void *x) {
Global = 1;
return NULL;

¥

Does this assertion always hold?

int main() {
pthread t t[2];
pthread create(&t[@], NULL, Threadl, NULL);
pthread create(&t[1], NULL, Thread2, NULL);
pthread join(t[©], NULL);
pthread join(t[1], NULL);
assert(Global == 1);

Benign Data Race

» There is no such thing as a benign data race

» C standard: program behavior is undefined if
there is a data race

Compiler can do anything!

» If there are no data races, all sequential
optimizations are safe

» If there Is a data race, all bets are off

» See: H. J. Boehm, “How to miscompile
programs with "benign” data races,”, USENIX
Conference on Hot Topic in Parallelism, 2011

Fixing Data Races

» Introduce synchronization between threads to
ensure mutual exclusion between critical parts
of your code

Critical parts are often called critical section

Only one thread at a time can be executing a
critical section

» Common form of synchronization are locks
There are many others

int Global;
pthread mutex_t mtx;

void *Threadl(void *x) {
pthread mutex_ lock(&mtx);
Global++;
pthread mutex_unlock(&mtx);
return NULL;

}

void *Thread2(void *x) {
pthread mutex_ lock(&mtx);
Global--;
pthread mutex_unlock(&mtx);
return NULL;

}

int main() {
pthread_t t[2];
pthread mutex_init(&mtx, 0);

Does this assertion always hold?

pthread create(&t[0], NULL, Threadl, NULL);
pthread create(&t[1], NULL, Thread2, NULL);
pthread join(t[@], NULL); pthread join(t[1], NULL);

assert(Global == 0);
pthread_mutex_destroy(&mtx);

Thread Sanitizer (TSan)

» TSan Is a tool for finding data races in C/C++
(and Go) programs

» Regularly used by Google on large code bases
(think Chrome browser)

Overview of TSan Algorithm

» It Instruments your program during compilation
All memory accesses
Synchronization

» You have to run your instrumented binary

» Instrumentation tracks memory accesses and
synchronization operations (e.g., mutexes)

» If there Is no synchronization between two
accesses, It reports a data race

Exercise
» Try out TSan in AptLab

» See README In /local/tsan-exercises

Conclusions

» Data races can be really bad and are hard to
discover

» Data race checkers are highly advantageous
for program understanding

» Crucial tool when something appears to be
wrong
Nondeterministic crash

Cannot replay results or reproduce a crash or
assertion violation

» Apply data race checker even when everything
seems ok

Maybe your tests are missing a race

Useful Links

https://computing.linl.gov/tutorials/parallel comp/

https://computing.linl.gov/tutorials/pthreads/

http://clang.llvm.org/docs/ThreadSanitizer.html

https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
http://clang.llvm.org/docs/ThreadSanitizer.html
http://clang.llvm.org/docs/ThreadSanitizer.html

