
Lecture 11

Checking Concurrent Prgms

Zvonimir Rakamarić
University of Utah

CS 5959 – Writing Solid Code | Fall 2015

Dec-7

Announcements

 Student course feedback

 Last homework is due Thu evening

 Submit your solution to github

 SAT competition

 Deadline is noon tomorrow (Tue)

 We will use your last commit or message me

commit hash

 Visited Univ. of Utah data center – cool!

 Last class on Wed

 Announcing results of the competition

 Pizza party

A long time ago (in a galaxy far, far away)...

 Doubling of computing performance every two

years

 Moore’s Law

 2x transistors every 2 years

 Dennard scaling

 Transistors will be faster and lower energy

 Computer scientists and practitioners alike took for

granted that their scaling problems would be solved

if they simply waited a year or two

Computing Revolution

Dennard + Moore
= 2x performance
 every 2 years

Chart originally from The Free Lunch Is

Over: A Fundamental Turn Toward

Concurrency in Software, 2009

Why Multicore in PCs?

 We were forced to multicore when Dennard

scaling broke down around a decade ago

 Could not increase frequency any more, but we

could still put more transistors on chips

 Moore’s law

 The number of transistors in chips doubles every

two years

 Seems to be failing too

[http://www.networkworld.com/article/2949034/]

 Entering dark silicon era

 Approximate heterogeneous computing

Today Concurrency is Pervasive

 Old problem of computer science

 Since ancient supercomputers

 Today

 Multi-cores even in cell phones

 Many-cores in desktops

 Most programs are concurrent

 At least the ones you care about

Many Paradigms, Languages, Libraries

 MPI

 Pthreads

 OpenMP, CUDA, OpenCL

 Cilk

 Chapel

 Erlang

 Scala, Java, C#

 Go

#include <pthread.h>

#include <stdio.h>

int Global;

void *Thread1(void *x) {

 Global++;

 return NULL;

}

void *Thread2(void *x) {

 Global--;

 return NULL;

}

int main() {

 pthread_t t[2];

 pthread_create(&t[0], NULL, Thread1, NULL);

 pthread_create(&t[1], NULL, Thread2, NULL);

 pthread_join(t[0], NULL);

 pthread_join(t[1], NULL);

}

Concurrency is Hard I

 Inefficient (dumb) concurrency is easy

 Big fat lock around everything

 Poor performance

 Efficient concurrency is hard

 A concurrent program should

 Function correctly

 Maximize throughput

 Finish as many tasks as possible

 Minimize latency

 Respond to requests as soon as possible

 While handling nondeterminism in the environment

Concurrency is Hard II

 Huge number of possible thread interleavings
(or schedules)

 How many interleavings are possible in a
concurrent program with n threads where each
thread has k instructions?

(n*k)! / (k!)n ¸ (n!)k

 Exponential in both n and k!

 Example: 5 threads with 5 instruction each

25! / 5!5 = 6.2336074e+14

 = 623 trillion interleavings

Concurrency is Hard III

 Concurrent executions (thread interleavings)

are highly nondeterminisitic

 Stress testing

 Trying to explore many different thread

interleavings by creating hundreds of threads

 Stress testing is highly inefficient

 Some concurrency bugs occur only in certain

thread interleavings

 Finding the “right” thread interleaving is pure luck

 No notion of coverage

 Running for days, even months

Concurrency Bugs

 Rare thread interleavings result in Heisenbugs

 Difficult to find, reproduce, and debug

 Observing the bug can “fix” it

 E.g., likelihood of interleavings changes when you

add printf statements

 A huge productivity problem

 Developers and testers can spend weeks chasing

a single Heisenbug

Common Concurrency-Related Issues

 Data races

 Atomicity violations

 Assertion violations due to thread interleavings

 Wrong result or crash

 Non-determinism

Data Race

 Data race is a simultaneous (concurrent)

access to the same memory location by

multiple threads, where at least one of the

accesses modifies the memory location

 Important class of bugs and the main focus on

this lecture

int Global;

void *Thread1(void *x) {

 Global++;

 return NULL;

}

void *Thread2(void *x) {

 Global--;

 return NULL;

}

int main() {

 pthread_t t[2];

 pthread_create(&t[0], NULL, Thread1, NULL);

 pthread_create(&t[1], NULL, Thread2, NULL);

 pthread_join(t[0], NULL);

 pthread_join(t[1], NULL);

 assert(Global == 0);

}

Does this assertion always hold?

Data Race

 How would you test your concurrent program

for data races?

Short Break: AptLab Tsan VM

 Go to

https://www.aptlab.net/

 Click on “Change Profile” and select “tsan_vm”

https://www.aptlab.net/
https://www.aptlab.net/

int Global;

void *Thread1(void *x) {

 int y1 = Global;

 y1++;

 Global = y1;

 return NULL;

}

void *Thread2(void *x) {

 int y2 = Global;

 y2--;

 Global = y2;

 return NULL;

}

int main() {

 pthread_t t[2];

 pthread_create(&t[0], NULL, Thread1, NULL);

 pthread_create(&t[1], NULL, Thread2, NULL);

 pthread_join(t[0], NULL);

 pthread_join(t[1], NULL);

 assert(Global == 0);

}

Does this assertion always hold?

int Global;

void *Thread1(void *x) {

 Global = 1;

 return NULL;

}

void *Thread2(void *x) {

 Global = 1;

 return NULL;

}

int main() {

 pthread_t t[2];

 pthread_create(&t[0], NULL, Thread1, NULL);

 pthread_create(&t[1], NULL, Thread2, NULL);

 pthread_join(t[0], NULL);

 pthread_join(t[1], NULL);

 assert(Global == 1);

}

Does this assertion always hold?

Benign Data Race

 There is no such thing as a benign data race

 C standard: program behavior is undefined if
there is a data race
 Compiler can do anything!

 If there are no data races, all sequential
optimizations are safe

 If there is a data race, all bets are off

 See: H. J. Boehm, “How to miscompile
programs with "benign“ data races,”, USENIX
Conference on Hot Topic in Parallelism, 2011

Fixing Data Races

 Introduce synchronization between threads to

ensure mutual exclusion between critical parts

of your code

 Critical parts are often called critical section

 Only one thread at a time can be executing a

critical section

 Common form of synchronization are locks

 There are many others

int Global;

pthread_mutex_t mtx;

void *Thread1(void *x) {

 pthread_mutex_lock(&mtx);

 Global++;

 pthread_mutex_unlock(&mtx);

 return NULL;

}

void *Thread2(void *x) {

 pthread_mutex_lock(&mtx);

 Global--;

 pthread_mutex_unlock(&mtx);

 return NULL;

}

int main() {

 pthread_t t[2];

 pthread_mutex_init(&mtx, 0);

 pthread_create(&t[0], NULL, Thread1, NULL);

 pthread_create(&t[1], NULL, Thread2, NULL);

 pthread_join(t[0], NULL); pthread_join(t[1], NULL);

 assert(Global == 0);

 pthread_mutex_destroy(&mtx);

}

Does this assertion always hold?

Thread Sanitizer (TSan)

 TSan is a tool for finding data races in C/C++

(and Go) programs

 Regularly used by Google on large code bases

(think Chrome browser)

Overview of TSan Algorithm

 It instruments your program during compilation

 All memory accesses

 Synchronization

 You have to run your instrumented binary

 Instrumentation tracks memory accesses and

synchronization operations (e.g., mutexes)

 If there is no synchronization between two

accesses, it reports a data race

Exercise

 Try out TSan in AptLab

 See README in /local/tsan-exercises

Conclusions

 Data races can be really bad and are hard to

discover

 Data race checkers are highly advantageous

for program understanding

 Crucial tool when something appears to be

wrong

 Nondeterministic crash

 Cannot replay results or reproduce a crash or

assertion violation

 Apply data race checker even when everything

seems ok

 Maybe your tests are missing a race

Useful Links

https://computing.llnl.gov/tutorials/parallel_comp/

https://computing.llnl.gov/tutorials/pthreads/

http://clang.llvm.org/docs/ThreadSanitizer.html

https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
http://clang.llvm.org/docs/ThreadSanitizer.html
http://clang.llvm.org/docs/ThreadSanitizer.html

