
Lecture 11

Checking Concurrent Prgms

Zvonimir Rakamarić
University of Utah

CS 5959 – Writing Solid Code | Fall 2015

Dec-7

Announcements

 Student course feedback

 Last homework is due Thu evening

 Submit your solution to github

 SAT competition

 Deadline is noon tomorrow (Tue)

 We will use your last commit or message me

commit hash

 Visited Univ. of Utah data center – cool!

 Last class on Wed

 Announcing results of the competition

 Pizza party

A long time ago (in a galaxy far, far away)...

 Doubling of computing performance every two

years

 Moore’s Law

 2x transistors every 2 years

 Dennard scaling

 Transistors will be faster and lower energy

 Computer scientists and practitioners alike took for

granted that their scaling problems would be solved

if they simply waited a year or two

Computing Revolution

Dennard + Moore
= 2x performance
 every 2 years

Chart originally from The Free Lunch Is

Over: A Fundamental Turn Toward

Concurrency in Software, 2009

Why Multicore in PCs?

 We were forced to multicore when Dennard

scaling broke down around a decade ago

 Could not increase frequency any more, but we

could still put more transistors on chips

 Moore’s law

 The number of transistors in chips doubles every

two years

 Seems to be failing too

[http://www.networkworld.com/article/2949034/]

 Entering dark silicon era

 Approximate heterogeneous computing

Today Concurrency is Pervasive

 Old problem of computer science

 Since ancient supercomputers

 Today

 Multi-cores even in cell phones

 Many-cores in desktops

 Most programs are concurrent

 At least the ones you care about

Many Paradigms, Languages, Libraries

 MPI

 Pthreads

 OpenMP, CUDA, OpenCL

 Cilk

 Chapel

 Erlang

 Scala, Java, C#

 Go

#include <pthread.h>

#include <stdio.h>

int Global;

void *Thread1(void *x) {

 Global++;

 return NULL;

}

void *Thread2(void *x) {

 Global--;

 return NULL;

}

int main() {

 pthread_t t[2];

 pthread_create(&t[0], NULL, Thread1, NULL);

 pthread_create(&t[1], NULL, Thread2, NULL);

 pthread_join(t[0], NULL);

 pthread_join(t[1], NULL);

}

Concurrency is Hard I

 Inefficient (dumb) concurrency is easy

 Big fat lock around everything

 Poor performance

 Efficient concurrency is hard

 A concurrent program should

 Function correctly

 Maximize throughput

 Finish as many tasks as possible

 Minimize latency

 Respond to requests as soon as possible

 While handling nondeterminism in the environment

Concurrency is Hard II

 Huge number of possible thread interleavings
(or schedules)

 How many interleavings are possible in a
concurrent program with n threads where each
thread has k instructions?

(n*k)! / (k!)n ¸ (n!)k

 Exponential in both n and k!

 Example: 5 threads with 5 instruction each

25! / 5!5 = 6.2336074e+14

 = 623 trillion interleavings

Concurrency is Hard III

 Concurrent executions (thread interleavings)

are highly nondeterminisitic

 Stress testing

 Trying to explore many different thread

interleavings by creating hundreds of threads

 Stress testing is highly inefficient

 Some concurrency bugs occur only in certain

thread interleavings

 Finding the “right” thread interleaving is pure luck

 No notion of coverage

 Running for days, even months

Concurrency Bugs

 Rare thread interleavings result in Heisenbugs

 Difficult to find, reproduce, and debug

 Observing the bug can “fix” it

 E.g., likelihood of interleavings changes when you

add printf statements

 A huge productivity problem

 Developers and testers can spend weeks chasing

a single Heisenbug

Common Concurrency-Related Issues

 Data races

 Atomicity violations

 Assertion violations due to thread interleavings

 Wrong result or crash

 Non-determinism

Data Race

 Data race is a simultaneous (concurrent)

access to the same memory location by

multiple threads, where at least one of the

accesses modifies the memory location

 Important class of bugs and the main focus on

this lecture

int Global;

void *Thread1(void *x) {

 Global++;

 return NULL;

}

void *Thread2(void *x) {

 Global--;

 return NULL;

}

int main() {

 pthread_t t[2];

 pthread_create(&t[0], NULL, Thread1, NULL);

 pthread_create(&t[1], NULL, Thread2, NULL);

 pthread_join(t[0], NULL);

 pthread_join(t[1], NULL);

 assert(Global == 0);

}

Does this assertion always hold?

Data Race

 How would you test your concurrent program

for data races?

Short Break: AptLab Tsan VM

 Go to

https://www.aptlab.net/

 Click on “Change Profile” and select “tsan_vm”

https://www.aptlab.net/
https://www.aptlab.net/

int Global;

void *Thread1(void *x) {

 int y1 = Global;

 y1++;

 Global = y1;

 return NULL;

}

void *Thread2(void *x) {

 int y2 = Global;

 y2--;

 Global = y2;

 return NULL;

}

int main() {

 pthread_t t[2];

 pthread_create(&t[0], NULL, Thread1, NULL);

 pthread_create(&t[1], NULL, Thread2, NULL);

 pthread_join(t[0], NULL);

 pthread_join(t[1], NULL);

 assert(Global == 0);

}

Does this assertion always hold?

int Global;

void *Thread1(void *x) {

 Global = 1;

 return NULL;

}

void *Thread2(void *x) {

 Global = 1;

 return NULL;

}

int main() {

 pthread_t t[2];

 pthread_create(&t[0], NULL, Thread1, NULL);

 pthread_create(&t[1], NULL, Thread2, NULL);

 pthread_join(t[0], NULL);

 pthread_join(t[1], NULL);

 assert(Global == 1);

}

Does this assertion always hold?

Benign Data Race

 There is no such thing as a benign data race

 C standard: program behavior is undefined if
there is a data race
 Compiler can do anything!

 If there are no data races, all sequential
optimizations are safe

 If there is a data race, all bets are off

 See: H. J. Boehm, “How to miscompile
programs with "benign“ data races,”, USENIX
Conference on Hot Topic in Parallelism, 2011

Fixing Data Races

 Introduce synchronization between threads to

ensure mutual exclusion between critical parts

of your code

 Critical parts are often called critical section

 Only one thread at a time can be executing a

critical section

 Common form of synchronization are locks

 There are many others

int Global;

pthread_mutex_t mtx;

void *Thread1(void *x) {

 pthread_mutex_lock(&mtx);

 Global++;

 pthread_mutex_unlock(&mtx);

 return NULL;

}

void *Thread2(void *x) {

 pthread_mutex_lock(&mtx);

 Global--;

 pthread_mutex_unlock(&mtx);

 return NULL;

}

int main() {

 pthread_t t[2];

 pthread_mutex_init(&mtx, 0);

 pthread_create(&t[0], NULL, Thread1, NULL);

 pthread_create(&t[1], NULL, Thread2, NULL);

 pthread_join(t[0], NULL); pthread_join(t[1], NULL);

 assert(Global == 0);

 pthread_mutex_destroy(&mtx);

}

Does this assertion always hold?

Thread Sanitizer (TSan)

 TSan is a tool for finding data races in C/C++

(and Go) programs

 Regularly used by Google on large code bases

(think Chrome browser)

Overview of TSan Algorithm

 It instruments your program during compilation

 All memory accesses

 Synchronization

 You have to run your instrumented binary

 Instrumentation tracks memory accesses and

synchronization operations (e.g., mutexes)

 If there is no synchronization between two

accesses, it reports a data race

Exercise

 Try out TSan in AptLab

 See README in /local/tsan-exercises

Conclusions

 Data races can be really bad and are hard to

discover

 Data race checkers are highly advantageous

for program understanding

 Crucial tool when something appears to be

wrong

 Nondeterministic crash

 Cannot replay results or reproduce a crash or

assertion violation

 Apply data race checker even when everything

seems ok

 Maybe your tests are missing a race

Useful Links

https://computing.llnl.gov/tutorials/parallel_comp/

https://computing.llnl.gov/tutorials/pthreads/

http://clang.llvm.org/docs/ThreadSanitizer.html

https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
http://clang.llvm.org/docs/ThreadSanitizer.html
http://clang.llvm.org/docs/ThreadSanitizer.html

