
Floating-point Numbers

Zvonimir Rakamarić

University of Utah

FP Computations are Ubiquitous

IEEE 754 Standard

 Well-known floating-point standard

 Published in 1985

 Almost everyone follows it

 So why are we even talking about this?

Challenges

 FP is “weird”

 Does not faithfully match math (finite precision)

 Non-associative

 Heterogeneous hardware support

 FP code is hard to get right

 Lack of good understanding

 Lack of good and extensive tool support

 FP software is large and complex

 High-performance computing (HPC) simulations

 Stock exchange

FP is Weird

 Finite precision and rounding

 x + y in reals ≠ x + y in floating-point

 Non-associative

 (x + y) + z ≠ x + (y + z)

 Creates issues with

 Compiler optimizations (e.g., vectorization)

 Concurrency (e.g., reductions)

 Standard completely specifies only +, -, *, /,

comparison, remainder, and sqrt

 Only recommendation for some functions

(trigonometry)

FP is Weird cont.

 Heterogeneous hardware support

 x + y*z on Xeon ≠ x + y*z on Xeon Phi

 Fused multiply-add

 Intel’s online article “Differences in Floating-Point

Arithmetic Between Intel Xeon Processors and the

Intel Xeon Phi Coprocessor”

 Common sense does not (always) work

 x “is better than” log(e^x)

 (e^x-1)/x “can be worse than” (e^x-1)/log(e^x)

 Error cancellation

Hard to Get Right

 Think about your triangle classifier

 Poor (no?) tool support

 Pascal Cuoq on John Regehr’s blog:

“The problem with floating-point is that people

start with a vague overconfident intuition of what

should work, and progressively refine this

intuition by removing belief when they are bitten

by implementations not doing what they

expected.”

Hard to Get Right cont.

 Uintah HPC framework developers

 Advanced, senior, knowledgeable developers

 Tedious manual debugging to root-cause an FP-

related bug

 Personal communication (paraphrasing)

 “When I turned on vectorization my output suddenly

changed.”

 “My OpenMP program occasionally returns a

different output.”

 “I have no idea what is going on.”

Real-World Examples of Bugs

 Patriot missile failure in 1991 (webpage)
 Miscalculated distance due to floating-point error

 Time in tenths of second as measured by the
system's internal clock was multiplied by 1/10 to
produce the time in seconds

 Inconsistent FP calculations in Uintah

Computing: floor(P/C)

Xeon

 P/C = 161.9999…

floor(P/C) = 161

Xeon

Phi

 P/C = 162

floor(P/C) = 162

Expecting

161 msgs

Sent

162 msgs

Floating-point Numbers

 Sign, mantissa, exponent

 ((-1)^S) * 1.M * 2^E

 Single precision: 1, 23, 8

 Double precision: 1, 52, 11

Floating-point Number Line

 3 bits for precision

 Between any two powers of 2, there are 23 = 8

representable numbers

Error Grows with Magnitude

Rounding Modes

 4 standard rounding modes

 Round to nearest (default)

 Round to 0

 Round to plus infinity

 Round to minus infinity

 Can be controlled

 Idea: randomize rounding mode

Floating-Point Operations

 First normalize to the same exponent

 Larger exponent -> shift mantissa right

 Then perform the operation

 Losing bits when exponents are not the same!

 Example

Kahan Summation

 Smaller error when performing summation

 Cool idea: Keep a separate running

compensation (a variable to accumulate small

errors)

 See wiki for pseudocode

