

Stick Diagrams

- You can plan things with paper and pencil using Stick Diagrams - Great for sketchbooks!!!!
- You'll need colored pencils
- Draw lines for layers instead of rectangles
- Then you can translate to layout

Vdd

Well spacing

- Wells must surround transistors by 1.8 u
- Implies 3.6 u (12 λ) between opposite transistor flavors
- Leaves room for one wire track

(a)

(b)

Area Estimation

- Estimate area by counting wiring tracks
- Multiply by 8 to express in λ, or by 2.4 to express in microns

Example: O3AI

- Sketch a stick diagram for O3AI and estimate area
- $Y=\overline{(A+B+C) \cdot D}$

Example: O3AI

Sketch a stick diagram for O3AI and estimate area

- $Y=\overline{(A+B+C) \cdot D}$

Vdd

Example: O3AI

- Sketch a stick diagram for O3AI and estimate area
- $Y=\overline{(A+B+C) \cdot D}$

Example: O3AI

Sketch a stick diagram for O3AI and estimate area

- $Y=(A+B+C) \cdot D$

Example: O3AI

Sketch a stick diagram for O3AI and estimate area

- $Y=\overline{(A+B+C) \cdot D}$

Zoom in on Latch

- Need two copies of this for a full D flip flop

Stick Diagram of Latch

- First add the gates
- Note where outputs can be shared
- Ignore details of signal crossings for now...

Stick Diagram of Latch

- First add the gates
- Note where the signals are relative to the schematic
- Note where additional connections are needed

Look at Gap
 \square

You need to have enough space for minimum width poly to fit through gap

Start Making Room

- Push D-signal poly out of the way with minimum spacing to DIF - We'll move it back later - Make sure to continue to DRC at every step!

Bit Slice Plan

- Plan is to stitch these together to make a register
- Inputs on top in M2
- Outputs on bottom in M2
- Clock and Clock-bar routed horizontally in M1

